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More Data Structures

Priority Queues, Comparators, 
Locators, Dictionaries
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Priority Queues and Heaps
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Priority Queue 
ADT (§ 2.4.1)

A priority queue stores a 
collection of items
An item is a pair
(key, element)
Main methods of the Priority 
Queue ADT

insertItem(k, o)
inserts an item with key k 
and element o
removeMin()
removes the item with 
smallest key and returns its 
element

Additional methods
minKey(k, o)
returns, but does not 
remove, the smallest key of 
an item
minElement()
returns, but does not 
remove, the element of an 
item with smallest key
size(), isEmpty()

Applications:
Standby flyers
Auctions
Stock market
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Total Order Relation

Keys in a priority 
queue can be 
arbitrary objects 
on which an order 
is defined
Two distinct items 
in a priority queue 
can have the 
same key

Mathematical concept of 
total order relation ≤
Reflexive property:
x ≤ x
Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y
Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z
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Comparator ADT (§ 2.4.1)
A comparator encapsulates 
the action of comparing two 
objects according to a given 
total order relation
A generic priority queue 
uses an auxiliary 
comparator
The comparator is external 
to the keys being compared
When the priority queue 
needs to compare two keys, 
it uses its comparator

Methods of the Comparator 
ADT, all with Boolean 
return type

isLessThan(x, y)
isLessThanOrEqualTo(x,y)
isEqualTo(x,y)
isGreaterThan(x, y)
isGreaterThanOrEqualTo(x,y)
isComparable(x)
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Sorting with a 
Priority Queue (§ 2.4.2)

We can use a priority 
queue to sort a set of 
comparable elements

Insert the elements one 
by one with a series of 
insertItem(e, e) 
operations
Remove the elements in 
sorted order with a series 
of removeMin() 
operations

The running time of this 
sorting method depends on 
the priority queue 
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted  in 
increasing order according to C
P ← priority queue with 

comparator C
while ¬S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while ¬P.isEmpty()
e ← P.removeMin()
S.insertLast(e)
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List-based Priority Queue
Implementation with an 
unsorted list

Performance:
insertItem takes O(1) time 
since we can insert the item 
at the beginning or end of 
the sequence
removeMin, minKey and 
minElement take O(n) time 
since we have to traverse 
the entire sequence to find 
the smallest key 

Implementation with a 
sorted list

Performance:
insertItem takes O(n) time 
since we have to find the 
place where to insert the 
item
removeMin, minKey and 
minElement take O(1) time 
since the smallest key is at 
the beginning of the 
sequence

4 5 2 3 1 1 2 3 4 5
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Selection-Sort

Selection-sort is the variation of PQ-sort where the 
priority queue is implemented with an unsorted 
sequence

Running time of Selection-sort:
Inserting the elements into the priority queue with n
insertItem operations takes O(n) time
Removing the elements in sorted order from the priority 
queue with n removeMin operations takes time 
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time 

4 5 2 3 1
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Insertion-Sort

Insertion-sort is the variation of PQ-sort where the 
priority queue is implemented with a sorted 
sequence

Running time of Insertion-sort:
Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
Removing the elements in sorted order from the priority 
queue with  a series of n removeMin operations takes 
O(n) time

Insertion-sort runs in O(n2) time 

1 2 3 4 5
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What is a heap (§2.4.3)
A heap is a (proper) binary 
tree storing keys at its 
internal nodes and 
satisfying the following 
properties:

Heap-Order: for every 
internal node v other than 
the root,
key(v) ≥ key(parent(v))
Complete Binary Tree: let h
be the height of the heap

for i = 0, … , h − 1, there are 
2i nodes of depth i
at depth h − 1, the internal 
nodes are to the left of the 
external nodes
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The last node of a heap 
is the rightmost internal 
node of depth h − 1

last node
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Height of a Heap (§2.4.3)
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)

Let h be the height of a heap storing n keys
Since there are 2i keys at depth i = 0, … , h − 2 and at least one key 
at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1
Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1
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Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a 
Heap (§2.4.3)

Method insertItem of the 
priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap
The insertion algorithm 
consists of three steps

Find the insertion node z
(the new last node)
Store k at z and expand z 
into an internal node
Restore the heap-order 
property (discussed next)
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Upheap
After the insertion of a new key k, the heap-order property may be 
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time
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Removal from a Heap (§2.4.3)
Method removeMin of 
the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap
The removal algorithm 
consists of three steps

Replace the root key with 
the key of the last node w
Compress w and its 
children into a leaf
Restore the heap-order 
property (discussed next)

2

65

79

last node

w

7

65

9
w

More Data Structures v1.1 16

Downheap
After replacing the root key with the key k of the last node, the 
heap-order property may be violated
Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root
Upheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time
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Vector-based Heap 
Implementation (§2.4.3)

Represent a heap with n keys by 
means of a vector of length n + 1
For the node at rank i

the left child is at rank 2i
the right child is at rank 2i + 1

Links between nodes are not 
explicitly stored
The leaves are not represented
The cell of at rank 0 is not used
Last node at rank n 
Operation insertItem corresponds 
to inserting at rank n + 1
Operation removeMin corresponds 
to removing at rank n
Yields in-place heap-sort
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PQ using Vector-based Heap

InsertItem(k,o)
Insert pair (k,o) at rank n+1, followed by Upheap(n+1) call 
to restore heap-order property

UpHeap(k) 
// swaps item at rank k upward into correct position
If k=1 then return; // already bubbled up to root. 
If rank k item is smaller than its parents

Swap rank k item with its parent (rank k/2)
Upheap(k/2).

O(log n) time for insertItem.
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PQ using Vector-based Heap
removeMin()

Swap rank 1 item with rank n item;
remove rank n item; store it in temp. 
call Downheap(1) to restore heap-order property.
return temp.

Downheap(k)
// Swaps item at rank k downard into correct position
If 2k> n then return; // item has no children
If rank k item is not smaller than its children

Let j be rank of child of rank k item with smaller key 
(j= 2k or 2k+1). 

Swap rank k item with rank j item
Downheap(j)

O(log n) time to removeMin.
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Heap-Sort (§2.4.4)

Consider a priority 
queue with n items 
implemented by means 
of a heap

the space used is O(n)
methods insertItem and 
removeMin take O(log n) 
time
methods size, isEmpty, 
minKey, and minElement
take time O(1) time

Using a heap-based 
priority queue, we can 
sort a sequence of n
elements in O(n log n) 
time
The resulting algorithm 
is called heap-sort
Heap-sort is much 
faster than quadratic 
sorting algorithms, such 
as insertion-sort and 
selection-sort
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PQ Implementations

O(n log n)O(log n)O(log n)(Vector-
based) heap

O(n2)O(n)O(1)unsorted list

O(n2)O(1)O(n)sorted list

PQ-Sort 
cost

remove-
Min

insert-
Item 

Implemen-
tation:

Space is O(n) for all implementations.
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In-place sorting

Sort in-place – only use O(1) extra space. 
For array-based implementations, PQ-Sort takes 2n 
space. 
Implement in-place sorting by having priority queue 
use input array to store values.
For heap-sort:

Use reverse comparator (so we remove maximum)
Phase I: As items are inserted, heap expands from left to 
right.
Phase II: As items removed, they are placed from right to 
left; heap contracts from right to left. 

More Data Structures v1.1 23

Locators
3 a

1 g 4 e
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Outline and Reading

Locators (§2.4.4)
Locator-based methods  (§2.4.4)
Implementation
Positions vs. Locators 
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Locators
A locators identifies and tracks a 
(key, element) item within a data 
structure
A locator sticks with a specific 
item, even if that element 
changes its position in the data 
structure
Intuitive notion:

claim check
reservation number

Methods of the locator ADT:
key(): returns the key of the 
item associated with the locator
element(): returns the element 
of the item associated with the 
locator

Application example:
Orders to purchase and 
sell a given stock are 
stored in two priority 
queues (sell orders and 
buy orders)

the key of an order is 
the price
the element is the 
number of shares

When an order is placed, 
a locator to it is returned
Given a locator, an order 
can be canceled or 
modified
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Locator-based Methods
Locator-based priority queue 
methods:

insert(k, o): inserts the item 
(k, o) and returns a locator 
for it
min(): returns the locator of 
an item with smallest key
remove(l): remove the item 
with locator l
replaceKey(l, k): replaces 
the key of the item with 
locator l
replaceElement(l, o): 
replaces with o the element 
of the item with locator l

locators(): returns an 
iterator over the locators 
of the items in the priority 
queue
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Dictionaries
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Outline and Reading
Dictionary ADT (§2.5.1)
Log file (§2.5.1)
Binary search (§3.1.1)
Lookup table (§3.1.1)
Binary search tree (§3.1.2)

Search (§3.1.3)
Insertion (§3.1.4)
Deletion (§3.1.5)
Performance (§3.1.6)

More Data Structures v1.1 29

Dictionary ADT
The dictionary ADT models a 
searchable collection of key-
element items
The main operations of a 
dictionary are searching, 
inserting, and deleting items
Multiple items with the same 
key are allowed
Applications:

address book
credit card authorization
mapping host names (e.g., 
cs16.net) to internet addresses 
(e.g., 128.148.34.101)

Dictionary ADT methods:
findElement(k): if the 
dictionary has an item with 
key k, returns its element, 
else, returns the special 
element NO_SUCH_KEY 
insertItem(k, o): inserts item 
(k, o) into the dictionary
removeElement(k): if the 
dictionary has an item with 
key k, removes it from the 
dictionary and returns its 
element, else returns the 
special element 
NO_SUCH_KEY 
size(), isEmpty()
keys(), Elements()
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Log File
A log file is a dictionary implemented by means of an unsorted 
sequence

We store the items of the dictionary in a sequence (based on a 
doubly-linked lists or a circular array), in arbitrary order

Performance:
insertItem takes O(1) time since we can insert the new item at the 
beginning or at the end of the sequence
findElement and removeElement take O(n) time since in the worst 
case (the item is not found) we traverse the entire sequence to 
look for an item with the given key

The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)
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Binary Search
Binary search performs operation findElement(k) on a dictionary 
implemented by means of an array-based sequence, sorted by key

At each recursive call, ask if number is higher, lower, or equal to 
midpoint. 
at each step, the number of candidate items is halved
terminates after a logarithmic number of steps

Example: findElement(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
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Lookup Table
A lookup table is a dictionary implemented by means of a sorted 
sequence

We store the items of the dictionary in an array-based sequence, 
sorted by key
We use an external comparator for the keys

Performance:
findElement takes O(log n) time, using binary search
insertItem takes O(n) time since in the worst case we have to shift 
n/2 items to make room for the new item
removeElement take O(n) time since in the worst case we have to 
shift n/2 items to compact the items after the removal

The lookup table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)
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Binary Search Tree
A binary search tree is a 
binary tree storing keys 
(or key-element pairs) 
at its internal nodes and 
satisfying the following 
property:

Let u, v, and w be three 
nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have 
key(u) ≤ key(v) ≤ key(w)

External nodes do not 
store items

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order
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Search
To search for a key k, 
we trace a downward 
path starting at the root
The next node visited 
depends on the 
outcome of the 
comparison of k with 
the key of the current 
node
If we reach a leaf, the 
key is not found and we 
return NO_SUCH_KEY
Example: 
findElement(4)

Algorithm findElement(k, v)
if T.isExternal (v)

return NO_SUCH_KEY
if k < key(v)

return findElement(k, T.leftChild(v))
else if k = key(v)

return element(v)
else { k > key(v) }

return findElement(k, T.rightChild(v))
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Insertion
To perform operation 
insertItem(k, o), we search 
for key k
Assume k is not already in 
the tree, and let let w be 
the leaf reached by the 
search
We insert k at node w and 
expand w into an internal 
node
Example: insert 5
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Deletion
To perform operation 
removeElement(k), we 
search for key k
Assume key k is in the tree, 
and let let v be the node 
storing k
If node v has a leaf child w, 
we remove v and w from the 
tree with operation 
removeAboveExternal(w)
Example: remove 4
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Deletion (cont.)
We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both internal

we find the internal node w 
that follows v in an inorder 
traversal
we copy key(w) into node v
we remove node w and its 
left child z (which must be a 
leaf) by means of operation 
removeAboveExternal(z)

Example: remove 3
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Performance
Consider a dictionary 
with n items 
implemented by means 
of a binary search tree 
of height h

the space used is O(n)
methods findElement , 
insertItem and 
removeElement take 
O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best 
case


