Computing and Software Systems 343, Autumn 2005
Mathematical Principles of Computing II

Assignment 1. Version 1.1.

Due Thursday, Oct. 6, 10:30 AM.

1. Design a method that accepts an array of numbers and computes (and returns) the maximum possible distance between any two duplicate numbers in the array. Distance in the array is defined as the difference between the two indices of the duplicate number in the array. For example, in the array A = {2, 3, 8, 5, 3, 3, 2, 5}, the distance between the two 5’s in the array is 7-3=4, the distance between the 2’s is 6-0=6, and the distance between the first two 3’s is 4-1 = 3. Your method should compute the distance for every pair of duplicates, and return maximum distance between any pair that it found. In the example, you should return 6 (representing the distance between the 2’s). If there are no duplicates in the array, you should return –1. Your program should not alter the array.

2. Analyze the time efficiency of your algorithm using worst-case analysis. Be sure to state the input parameter, as well as what basic operations you are counting. State exactly how many operations you counted, and show how you got your result.

3. Consider the following algorithm for finding the distance between two closest elements in an array of numbers.

Algorithm MinDistance(A[0..n-1]):

Input: an array A containing n – 1 numbers.

Output: The smallest distance between two different elements of A.

dmin (infinity.

for i (0 to n –1 do

for j (0 to n –1 do

if i (j and |A[i] – A[j]| < dmin

dmin (|A[i] – A[j]|

return dmin
a. Let n be the number of items in the input array. In terms of n, exactly how many times is the line “dmin (|A[i] – A[j]|” executed in the worst case? Show your work.

b. Describe an array containing n items that would force the worst-case behaviour from part (a).

c. Write a loop invariant for the outermost loop (on variable i) that would be useful for proving correctness of the algorithm. Only write a loop invariant, the proof is not necessary.

4. Make as many improvements as you can to the algorithmic solution to the MinDistance problem (As stated in part 3). If you need to, you may change the algorithm altogether; if not, improve the implementation given. Explain why your solution is an improvement.

5. Problem #1 in the Exercise 2.1 section (p. 50 of the book).

6. Write a recurrence equation to represent the worst-case number of comparisons operations used for recArrayFind, listed below. (Count both comparisons between items in the array, and comparisons between numbers representing indexes into the array). Then solve the recurrence equation, getting a closed form solution.

Algorithm recArrayFind(x, A, n):

Input: An element x, an array A with n (1 elements.

Output: The index i such that x= A[i] or –1 if no element of A is equal to x.

if (A[n-1] = x) then

return n-1

else if n = 1

return -1

else

return recArrayFind(x,A,n-1)

7. Consider the following recurrence equation for defining T(n):
T(n) = 4 if n =0
T(n) = 3T(n-1) + n if n > 0.
Prove using induction that for all k (0, T(k) (4k+1. You may assume the basic facts that r (4r for any positive integer r, and that if a (b, then a+c (b+c.

Note: Extra Credit problems are worth at most half as much as assigned problems, so finish all the assigned problems first!

8. [Extra Credit]: Suppose you are given a set of small boxes, numbered 1 to n, identical in every respect except that each of the first i contain a pearl whereas the remaining n - i are empty. You also have two magic wands that can each test if a box is empty or not in a single touch, except that a wand disappears if you test it on an empty box. Show that without knowing the value of i, you can use the two wands to determine all the boxes containing pearls using at most c * sqrt(n) touches, for some fixed constant c.

