Computing and Software Systems 343, Fall 2005
Mathematical Principles of Computing II

Assignment 2. Version 1.0.

Due Thursday, Oct, 13, 10:30 AM.

1. Using the definition of Big-Theta, show that for
[image: image1.wmf],

))

1

log(

6

(

)

(

0

3

å

=

+

+

=

n

i

i

i

n

f

 f(n) is (n4). (what constants work?). Hint: You do not have to evaluate the summation exactly, but can simply show that c2 n4 (f(n) (c1 n4 for appropriately chosen constants for large enough n.

2. We can implement mergesort without recursion by staring with merging adjacent elements of a given array, then merging sorted pairs, and so on. Implement this bottom-up version of mergesort, and submit your program using e-submit. The e-submit link on the website will start working sometime on Friday. Your program is required to sort arrays of doubles, and should be able to read in a file of doubles, and print out the doubles. You may use the provided arrayIOUtilities.java for reading a file of doubles from a text file.

3. Consider the following Mergesort-like program, based on Merge from the book (p. 124).
Algorithm Merge3Sort(A[0..n-1])
 Input: Array A with n items
 Output: Array A sorted
if n > 2
 copy A[0..(n/3(-1] to B[0..(n/3(-1]
 copy A[(n/3(..2(n/3(-1] to C[0..(n/3(-1]
 copy A[2(n/3(..n-1] to D[0..n-2(n/3(-1]
 Merge3Sort(B)
 Merge3Sort(C)
 Merge3Sort(D)
 Merge(B,C,T) // use Merge described in the book.
 Merge(T,D,A) // use Merge described in the book.
 return A
else if n=2
 if A[0] > A[1] then swap A[0] and A[1]
 return A
else return A

a. Write a recurrence equation representing the worst-case cost of your Merge3sort algorithm, in terms of key comparisons (comparisons between items in the input Array).

b. Solve your recurrence equation for Merge3Sort to obtain a closed form exact solution

4. Problem #1, section 3.3.

5. Triomino Puzzle, problem #10 in section 4.1. High-level pseudocode is good enough for this, except that you must show where the recursion is happening and the parameters to the recursive call must be clear.

6. Consider the following two recurrence equations, f(n) and g(n). Suppose they represent the worst-case cost of two different algorithms that solve the same problem. Which equation has a lower cost at n=214? How about at n=23? Briefly explain how you got your answer.

f(n) = 200 for all n ≤4

f(n) = 2 f(n/2) + 9n2 for all n >4.

g(1) = 0

g(n) = 3 g(n/2) + n2 for all n >1.

7. Design an algorithm for a divide-and-conquer method for computing an when given floating point input a and positive integer n. Your recursive method should be based on the fact that an = a(n/2(* a(n/2(.

a. Write out your algorithm in pseudocode.

b. Draw a picture representing the tree of recursive calls made by your algorithm. Exactly how many recursive calls are made when n is a power of 2?

c. Write a recurrence equation T(n) that represents the worst case number of floating point multiplications done by your algorithm. You may assume n is a power of 2.

d. Solve your recurrence equation to get a closed form solution.

e. Is this algorithm better than the brute-force approach?

Note: Extra credit is not worth as much as the normal problems, so do the normal problems first!

8. [Extra Credit]: Let P be a set of n teams in some sport. A round robin tournament is a collection of games where each team plays each other team exactly once, and where each game is scheduled to happen in one of n-1 rounds. In each round, every team must play exactly one match against another team. This means no team can play two matches in the same round, and by the end of all n-1 rounds, each team must have played every other team exactly once. Design a divide and conquer algorithm to create a round-robin tournament schedule. You may assume n is a power of 2.

9. [Another Extra Credit]:

a. Compute the exact number of key assignments made in the worst-case for mergesort on input size n. A key assignment is one where you are taking a value originally contained in the input and assigning it into some other variable in some other place. Do this for the mergesort described in the book on page 124.

b. Compute the exact amount of space needed to run the mergesort algorithm when the input size is n. You only need to count the space needed for storing the values that were in the original array, and wherever they were copied. You do not need to count the space taken by values for other variables, such as the integer variables used for looping through an array. Note that space can be reused during different calls to mergesort.

_1190109775.unknown

