Computing and Software Systems 343, Autumn 2005
Mathematical Principles of Computing II

Assignment 3. Version 1.1.

Part 3a due Thursday, Oct. 27, hand in-class on paper.

Part 3b due Tuesday, Nov. 1st, e-submit.

This assignment is on the convex hull algorithm. In it, you will study the brute-force algorithm and the quickhull algorithm, eventually implementing the quickhull algorithm in Java. There is starter code on the website. To minimize the work you have to do, you may wish to use the code on the website, which includes an implementation of reading in a set of points from the textfile, and running a brute-force convex hull algorithm on those points, and printing out the answer.

Assignment part 3a , due Thursday Oct. 27th.

1. What is the largest and what is the smallest number of extreme points the convex hull of a set of n distinct points can have? (Extreme points are the vertices; this is Ex. 3.3-5)

2. Consider the following brute-force algorithm for solving the convex hull problem

 Algorithm ConvexHull(S)

Input: Set S of 2D points

Output: A polygon representing the convex hull of S; the polygon is a list of
 vertices in clockwise order from the start point.
 Find the point x in S that has minimum x value.
 polygon (new empty list

 Add x to the end of polygon.

 current (x

Repeatedly do the following:

 Iterate through the points in S until you find the point y that represents

 the next vertex from current in the clockwise direction.

 This can be done by checking, for all other points besides y and current,
 whether or not these points are on or to the right of the line from

 current to y.

 Once this point is found, if it is the same vertex as x (the starting vertex),

 then we are done, and exit the outer loop. Otherwise add it to the end of the list

 polygon and let current (this new point.

 Return the list polygon.

a. Let us analyze this procedure, where the basic operation is checking whether a point is to the right of a line defined by two other points. Exactly how many basic operations occur on the following input set of 15 points?

1.0 2.0

90.0 15.0

95.0 96.0

40 87

42.0 10.0

10 24

100.0 2.0

40.0 -10.0

10 81

50.0 -50.0

2.0 80

42 53

76 85

55 94

1.5 75

Note: This brute force algorithm is implemented for you in a java program, and the above input is in file testinput1.txt. The easiest solution is probably to use a static variable to count the number of basic operations.

b. For this algorithm, is the worst-case cost, best-case cost, and average case cost the same or different when considerint the same input size? Here assume input size n is the number of input 2D points.

c. In the worst-case, exactly how many basic operations are required on input size n?

3. For the same input from problem 2a above, illustrate and explain how of QuickHull would compute the convex hull. Your explanation must include at least the following information: for each recursive call made, you must show what data were passed to the call in its input, and show the data that were returned.

4. Exercise from Section 4.6, #6

5. Exercise from Section 4.6, #9. Give a picture of a set of points along with a brief description of how to generate the points.

6. Highly recommended extra credit exercise: Exercise from Section 4.1, #5. This is practice using the Master Theorem. Since this is a last minute addition (I forgot to include this in the original assignment), you are not technically required to do this, although you can earn up to 3 bonus points for this.

Assignment part 3b: Due Tuesday, Nov. 1st.

7. Implement the QuickHull algorithm in Java. Your program must be able to read in a text file of numbers representing 2D points, and print out the set of vertices in the polygon solution. (You are not required to draw the result; drawing things out may help for debugging though…) It is recommended that you use the Java code on the website; this code already does the input of the points, as well as the determinant calculation from the book. You should e-submit your Java code. You need to submit a print-out of your code only if you would like the possibility of feedback comments on your code.

Extra Credit (due Thursday, Oct. 27).
A. Write both an iterative and recursive algorithm for solving the following problem: The input consists of two positive integers, n and k. Compute and return the total number of ways n can be written as a sum of k positive integers. Here the order of the integers matter, so that 1 + 3 is different than 3 + 1. So for n=4 and k = 2, your program should return 3, since there are three ways of adding two positive integers to get 4: 1+3, 2+2, and 3+1. Discuss the runtime of both your solutions.

B. See extra credit in problem #6, hw 3a.

