Computing and Software Systems 343, Fall 2005
Mathematical Principles of Computing II

Assignment 4. Version 1.0.

Due Tuesday, Nov. 8. 

1. Section 8.1, exercise #1

2. Section 8.4, exercise #1. For part a, your answer should show the array of subproblem solutions, with the values of the optimal subset stored (not the actual subset). Do not use the memory function technique. 

3. Section 8.4, exercise #4.  

4.  In the change making problem, you are given n coin denominations in cents: 
cn > cn-1 > … > c1, and an amount x in change, and you want to return the number of coins needed to make x in change. You will compute and return the fewest number of coins possible that will make x cents in change, or –1 if it is not possible to make x in change using the given coin types. If a valid solution is found, it should be least number of coins possible in any combination (an optimal solution). Your algorithm will take two parameters as input: the array of coin types (of size n), and the amount in change to make (an integer x).  (This is Section 8.4, problem #9).

a. Using pseudocode, write a dynamic program that solves this problem. It may help to think of a recursive way of solving the problem, and then figure out the iterative technique. 

b. Argue about why your program is correct. This should be done by stating the subproblem you solved, how your subproblems combined to solve larger subproblems, and how you made sure you considered all possible solutions. 

c. Analyze the worst-case running-time and space requirements for your solution, in terms of n and x.

5. Section 8.2, exercise #7.

Not required extra problems:

[Extra Credit 1]: Section 8.2, Exercise #10. To get the maximum amount of extra credit points, figure out how to use only O(n2) extra space. With the information you store, you should be able to retrieve all the different paths on demand. 

[Extra Credit 2]: Let P be a convex polygon. A triangulation of P is an addition of diagonals connecting the vertices of P so that each interior face is a triangle. The weight of a triangulation is the sum of the lengths of the diagonals. Assuming that we can compute lengths and add and compare them in constant time, give an efficient algorithm for computing a minimum-weight triangulation of P. 

