Computing and Software Systems 343, Autumn 2005
Mathematical Principles of Computing II

Assignment 6. Version 1.0.

Due Thursday, Dec. 1, 10:30 AM.

Power Grid
Learning Objectives
· Reading, understanding, and using the graph ADT

· Prim's algorithm and its implementation

· More practice with debugging and constructing good test cases

The power grid (the infrastructure and wires needed to provide electricity) in Tacoma has been destroyed by a huge fire. An emergency plan has been put into place, but it is expensive and so therefore cannot be a long-term solution. You are part of the reconstruction team. You are one of the software engineers who need to figure out a good way to connect the power grid.

You have decided that the best way to do this is to first list all the places that need power. Each one of these places will be represented by a vertex in a graph. Making a direct power connection between some pairs of places will be impossible (because connecting them would require digging up parts of the city that can't be disrupted or because it would require construction that is far too expensive). Of the remaining possible connections, you would have to estimate how much it would cost to connect the two places.

Fortunately, someone has already provided all of this information to you. Your task is to come up with a set of connections such that there is an electrical path from every vertex to every other vertex. The head of your software design team has decided that Prim’s minimum spanning tree algorithm is the best way to solve this problem. Furthermore, the head designer is a stickler for run-time efficiency; your solution must be reasonably time-efficient.

You are provided with code that implements a simple graph ADT. You will need to write code that implements Prim’s algorithm. Here are the specific requirements for your solution:

· You should allow the user to specify a graph file that has place and cost data (Terminal input is fine – you do not need to write a GUI; look at the given example graph files to see the input text file format for graphs).
· As output, you should print the set of edges in the minimum spanning tree your algorithm generates. (You are not required to write a procedure that “return” a valid graph data structure that is a copy of the original graph; a print-out of the edges in the mst is enough.)

· As output, you should also print out the total cost of the minimum spanning tree.
· If n is the number of vertices, and m is the number of edges, your algorithm must run in either O(m log n) time or O(n2) time. (You can decide which run-time to target; there is more than one possible solution).
· In addition to your code, be sure to additional turn-in test cases, and a report (as described below; the report should include answers to the time-efficiency questions).

Tips
Familiarize yourself with the graph ADT code before doing anything. Notice that when the graph data is read in, it returns a hash table that maps labels to vertices. (Why is that necessary?) Then read and understand how Prim’s algorithm works. Also be sure to study the differences in run-time cost for Prim’s depending on the underlying implementation of the priority queue and the method of storage for the graph. You are ready to write code only after these steps.

You may also want to familiarize yourself with the other code that is provided, namely, the various versions of the priority queue code. Although you are not required to use this additional code, knowing how to use it in the context of Prim’s algorithm will help reduce the time it takes to implement your solution.

The Starter Code is available in prim.zip from our class website.

You should generate your own test cases and test them on your code.

Software Engineering
Understand the graph ADT code and Prim's algorithm before writing code. You will waste valuable time if you don't. (Thought questions: Is the graph ADT code written in a way you would have implemented it? Why or why not? Are there object-oriented principles you think are not being adhered to in the code?)

It is a good idea to comment your code and use good programming practices (good variable names and good indentation), so that it is easy to figure out what it is doing when/if you detect a bug.

What to Turn In
· Electronically turn in the code you created. (Use e-submit).

· Electronically turn in two test files, containing graph data with a non-trivial number of vertices (at least 10) and a non-trivial number of edges (at least 25). Think carefully about your test cases, because they should illustrate that your algorithm works and will therefore be useful in debugging.

· Finally, turn in a report (on paper, in class) answering the following questions:

.
1. For each major method call that your implementation of Prim’s algorithm makes, state its worst-case run-time cost. Be sure to state what the input size parameter(s) are (so if you say O(n), what does n represent, in terms of the input graph?).
2. Explain the overall worst-case run-time cost of your implementation of Prim’s on a graph with n vertices and m edges.
3. What main thing(s) have you learned from this assignment?

Grading
This programming assignment will be graded primarily on functionality, secondarily on the report and question answers, but with some points also going toward code organization and readability.

Bonus (Extra credit)

1. (Up to 10 points) Make a non-trivial improvement to your application. A GUI would be the obvious thing to do (3 points), but for more of a challenge, come up with some sort of feature in this application that involves modifying or adding to the algorithm. For example, displaying the graph somehow and showing each edge as it is added (by coloring it or making the line thicker) to the final minimum spanning tree would be challenging. Describe what you did and why you think it is a non-trivial improvement in your report.

