Computing and Software Systems 343, Spring 2003
Mathematical Principles of Computing II

Assignment 5. Version 1.0.

Due Thursday, May 8. 

1. The pseudocode for the 0-1 Knapsack problem in the book and on the slides only give the total benefit of the subset that yields the maximum benefit. It does not return (or store) the actual subset. Rewrite the pseudocode so that in addition to computing the maximum benefit, the algorithm also computes and returns the best subset. You may use any version of the pseudocode on the slides or in the book. 

2. Implement the 0-1 Knapsack algorithm in Java. Your implementation should read in (weight-benefit) pairs from a text file, as well as a user-entered weight limit, and then printout the correct solution (both the items in the best solution as well as the benefit obtained from the best solution). There is some code provided. ItemInput.LoadItems() returns an ArrayList of Items, an Item is essentially a weight-benefit pair. KeyboardReader.readInt() can be used to read in the maximum weight limit that the user enters. Turn in your java code using Blackboard’s digital drop box.

Consider the change making problem, where you are given n coin denominations in cents: cn > cn-1 > … > c1, and an amount x in change to return, and you want to return the fewest number of coins possible that will make x cents in change. You may assume that c1 = 1, so that it is always possible to make amount x in change.

3. Give the pseudocode for a recursive algorithm that solves this problem.

4. Give the pseudocode for an iterative dynamic programming algorithm that solves this problem.

5. Analyze the worst-case running-time and space requirements for your iterative solution, in terms of n and x. 

6. Explain how the greedy TaskSchedule method can be implemented in O(n log n) time. Be sure to state what data structures are used. 

Extra Credit: 

Problem C-5.5 in the book. 

