Computing and Software Systems 343, Winter 2003
Mathematical Principles of Computing II

Assignment 7. Version 1.0.

Due Thursday, May 29.

1) Finish Part 2 from the previous assignment. Turn in your .java files via blackboard’s digital drop box. Part 2 is listed below; see the last homework for a description of the provided code).

(Part 2. Extend the DFS class to implement a “connected components print-out” that prints the name of each node and edge followed by the connected component number it belongs to. You will also need to write code that calls your DFS traversal. You may add code to GraphMain to do this.)

Problems from the book:

2) Using the graph described in R-6.6, do the following:

a) Draw the graph. Label each edge of the graph with a distinct letter from the alphabet.

b) Determine the order in which vertices and edges are first visited in a DFS traversal starting at vertex 1. Your answer should be a complete ordering of vertices and edges. You may assume adjacency lists store the adjacent vertices in numerical order as shown in the table.

c) Determine the order in which vertices and edges are first visited in a BFS traversal starting at vertex 1. Your answer should be a complete ordering of vertices and edges.

3) R-6.8

4) Write pseudocode for an algorithm that computes the length of the longest simple path between any two vertices in a free tree T. This is problem C-6.12, except that the definition of diameter of a tree in C-6.12 is incorrect because they omit the word “simple”.

5) R-6.10

Extra Credit:

Implement Topological Sort by extending the DFS template method. Since you need a directed graph ADT for this, you have several options: 1) you may extend your graph ADT to handle directed edges, extend the abstract DFS class to handle directed edges, and implement topological sort on top of that. 2) You may use JDSL (Java data structures library) and the directed graph ADT they provide, along with the DFS template class that they provide. You may not use the TopologicalSort class defined in JDSL. There is a link to the JDSL classes on the website.

Your topological sort should return a list of vertices in a topologically sorted order. You will need to write code that creates some directed graph, as well as runs your topological sort in order to test your program.

