
TCSS343 winter 03, analysis version 1.0 1

Analysis of Algorithms

AlgorithmInput Output

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

Analysis of Algorithms v1.2 2

Pseudocode (§1.1)
High-level description
of an algorithm
More structured than
English prose
Less detailed than a
program
Preferred notation for
describing algorithms
Hides program design
issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max
element of an array

Analysis of Algorithms v1.2 3

Pseudocode Details

Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
Indentation replaces braces

Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
←Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other

mathematical
formatting allowed

Analysis of Algorithms v1.2 4

Primitive Operations
Basic computations
performed by an
algorithm
Identifiable in
pseudocode
Largely independent from
the programming
language

Examples:
Evaluating an
expression
Assigning a value
to a variable
Indexing into an
array
Calling a method
Returning from a
method

Analysis of Algorithms v1.2 5

Estimating performance

Random Access Machine
(RAM) Model has:

A CPU
An potentially unbounded bank of
memory cells
Each cell can hold an arbitrary
number or character
Memory cells are numbered
Accessing any cell takes unit time

0
1
2

Count Primitive Operations
= time needed by RAM model

Analysis of Algorithms v1.2 6

Running Time (§1.1)
The running time grows with
the input size.
Running time varies with
different input
Worst-case: look at input
causing most operations
Best-case: look at input
causing least number of
operations
Average case: between best
and worst-case.

0

20

40

60

80

100

120

R
un

ni
n

g
Ti

m
e

1000 2000 3000 4000

Input Size

best case
average case
worst case

TCSS343 winter 03, analysis version 1.0 2

Analysis of Algorithms v1.2 7

Counting Primitive
Operations (§1.1)

Worst-case primitive operations count, as a
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 2

Analysis of Algorithms v1.2 8

Counting Primitive
Operations (§1.1)

Best-case primitive operations count, as a
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 0

{ increment counter i } 2(n − 1)
return currentMax 1

Total 5n

Analysis of Algorithms v1.2 9

Defining Worst [W(n)], Best
[B(N)], and Average [A(n)]

Let In = set of all inputs of size n.
Let t(i) = # of primitive ops by alg on input i.
W(n) = maximum t(i) taken over all i in In

B(n) = minimum t(i) taken over all i in In

A(n) = , p(i) = prob. of i occurring.

We focus on the worst case
Easier to analyze
Usually want to know how bad can algorithm be
average-case requires knowing probability; often
difficult to determine

∑
∈ nIi

itip)()(

Analysis of Algorithms v1.2 10

Experimental Studies (§ 1.6)

Implement your algorithm
Run your implementation
with inputs of varying size
and composition
Measure running time of
your implementation (e.
g., with
System.currentTimeMillis())
Plot the results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

Ti
m

e
(m

s)

Analysis of Algorithms v1.2 11

Limitations of Experiments

Implement may be time-consuming and/or
difficult
Results may not be indicative of the running
time on other inputs not included in the
experiment.
In order to compare two algorithms, the same
hardware and software environments must be
used
Infeasible to test for correct-
ness on all possible inputs.

Analysis of Algorithms v1.2 12

Theoretical Analysis
Uses a high-level description of the algorithm
instead of an implementation
Characterizes running time as a function of
the input size, n.
Takes into account all possible inputs
Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment
Can prove correctness

TCSS343 winter 03, analysis version 1.0 3

Analysis of Algorithms v1.2 13

Growth Rate of Running Time

Changing the hardware/ software
environment

Affects running time by a constant factor;
Does not alter its growth rate

Example: linear growth rate of
arrayMax is an intrinsic property of
algorithm.

Analysis of Algorithms v1.2 14

Growth Rates

Growth rates of
functions:

Linear ≈ n
Quadratic ≈ n2

Cubic ≈ n3

In a log-log chart,
the slope of the line
corresponds to the
growth rate of the
function (for
polynomials)

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

Analysis of Algorithms v1.2 15

Constant Factors

The growth rate is
not affected by

constant factors or
lower-order terms

Examples
102n + 105 is a linear
function
105n2 + 108n is a
quadratic function

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic

Quadratic

Linear
Linear

Analysis of Algorithms v1.2 16

Big-Oh and Growth Rate
The big-Oh notation gives an upper bound on the
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)
We can use the big-Oh notation to rank functions
according to their growth rate

YesYesSame growth
YesNof(n) grows more
NoYesg(n) grows more

g(n) is O(f(n))f(n) is O(g(n))

Analysis of Algorithms v1.2 17

Big-Oh Notation (§1.2)
Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

Example: 2n + 10 is O(n)
2n + 10 ≤ cn
(c − 2) n ≥ 10
n ≥ 10/(c − 2)
Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Analysis of Algorithms v1.2 18

Big-Oh Example

Example: the function
n2 is not O(n)

n2 ≤ cn
n ≤ c
The above inequality
cannot be satisfied
since c must be a
constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

TCSS343 winter 03, analysis version 1.0 4

Analysis of Algorithms v1.2 19

More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

3 log n + log log n
3 log n + log log n is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + log log n ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 2
Analysis of Algorithms v1.2 20

Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions
Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Analysis of Algorithms v1.2 21

Asymptotic Algorithm Analysis
asymptotic analysis = determining an algorithms
running time in big-Oh notation
asymptotic analysis steps:

We find the worst-case number of primitive operations
executed as a function of the input size
We express this function with big-Oh notation

Example:
We determine that algorithm arrayMax executes at most
7n − 2 primitive operations
We say that algorithm arrayMax “runs in O(n) time”

or “runs in order n time”
Since constant factors and lower-order terms are
eventually dropped, we can disregard them when
counting primitive operations!

Analysis of Algorithms v1.2 22

Intuition for Asymptotic
Notation

Big-Oh
f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
f(n) is ω(g(n)) if is asymptotically strictly greater than g(n)

Analysis of Algorithms v1.2 23

Relatives of Big-Oh
big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0
and an integer constant n0 ≥ 1 such that
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 and an
integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0

little-oh
f(n) is o(g(n)) if, for any constant c > 0, there is an integer
constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

little-omega
f(n) is ω(g(n)) if, for any constant c > 0, there is an integer
constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0

Analysis of Algorithms v1.2 24

Example Uses of the
Relatives of Big-Oh

f(n) is ω(g(n)) if, for any constant c > 0, there is an integer constant n0 ≥
0 such that f(n) ≥ c•g(n) for n ≥ n0

need 5n0
2 ≥ c•n0 → given c, the n0 that satifies this is n0 ≥ c/5 ≥ 0

5n2 is ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

5n2 is Ω(n2)

TCSS343 winter 03, analysis version 1.0 5

Analysis of Algorithms v1.2 25

properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations (Sec. 1.3.1)
Logarithms and Exponents (Sec. 1.3.2)

Proof techniques (Sec. 1.3.3)
Basic probability (Sec. 1.3.4)

Math you need to know

Analysis of Algorithms v1.2 26

Proofs are
a sequence of statements
Each statement is true, based on

Definitions
Hypotheses
Well-known math principles
Previous statements

Statements lead towards conclusion

Math you need to know

Analysis of Algorithms v1.2 27

Induction proof

Method of proving statements for
(infinitely) large values of n, (n is the
induction variable).
Math way of using a loop in a proof.

Analysis of Algorithms v1.2 28

Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then xn – yn is divisible by x-y.

Let Sn denote “for all x and y, xn – yn is divisible by x-
y”

Analysis of Algorithms v1.2 29

Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then xn – yn is divisible by x-y.

Let Sn denote “for all x and y, xn – yn is divisible by x-
y”
Proof with induction:

Base case: show S1

Inductive Hypothesis (IH): for all k ≥1, if Sk is
true, than Sk+1 is true.

OR
Inductive Hypothesis (IH): for all k ≥2, if Sk-1 is
true, than Sk is true.

Analysis of Algorithms v1.2 30

Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then xn – yn is divisible by x-y.

Let Sn denote “for all x and y, xn – yn is divisible by x-
y”
Proof with induction:

TCSS343 winter 03, analysis version 1.0 6

Analysis of Algorithms v1.2 31

More math tools & proofs

Correctness of computing average
loop invariants and induction

Recurrence equations
Strong induction
Cost of recursive algorithms with
recurrence equations.

Analysis of Algorithms v1.2 32

Computing Prefix Averages
asymptotic analysis
examples: two algorithms
for prefix averages
The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of
prefix averages of another
array X has applications to
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

Analysis of Algorithms v1.2 33

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n

for i ← 0 to n − 1 do n
s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1

Analysis of Algorithms v1.2 34

Arithmetic Progression

The running time of
prefixAverages1 is
O(1 + 2 + …+ n)
The sum of the first n
integers is n(n + 1) / 2

There is a simple visual
proof of this fact

Thus, algorithm
prefixAverages1 runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Analysis of Algorithms v1.2 35

Prefix Averages (Linear, non-
recursive)

The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1
Algorithm prefixAverages2 runs in O(n) time

Analysis of Algorithms v1.2 36

Prefix Averages (Linear)
The following algorithm computes prefix averages in
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n)
Input array X of n ≥ 1 integer.

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1]
if n=1

A[0] ← X[0]
return A[0]

tot ← recPrefixSumAndAverage(X,A,n-1)
tot ← tot + X[n-1]
A[n-1] ← tot / n
return tot;

TCSS343 winter 03, analysis version 1.0 7

Analysis of Algorithms v1.2 37

Prefix Averages (Linear)
The following algorithm computes prefix averages in
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of n ≥ 1 integer.

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1] #operations
if n=1 1

A[0] ← X[0] 3
return A[0] 2

tot ← recPrefixSumAndAverage(X,A,n-1) 3+T(n-1)
tot ← tot + X[n-1] 4
A[n-1] ← tot / n 4
return tot; 1

Analysis of Algorithms v1.2 38

Prefix Averages, Linear

Recurrence equation
T(1) = 6
T(n) = 13 + T(n-1) for n>1.

Solution of recurrence is
T(n) = 13(n-1) + 6

T(n) is O(n).

