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Analysis of Algorithms

AlgorithmInput Output

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.
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Pseudocode (§1.1)
High-level description 
of an algorithm
More structured than 
English prose
Less detailed than a 
program
Preferred notation for 
describing algorithms
Hides program design 
issues

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max 
element of an array
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Pseudocode Details

Control flow
if … then … [else …]
while … do …
repeat … until …
for … do …
Indentation replaces braces 

Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
←Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other 

mathematical 
formatting allowed
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Primitive Operations
Basic computations 
performed by an 
algorithm
Identifiable in 
pseudocode
Largely independent from 
the programming 
language

Examples:
Evaluating an 
expression
Assigning a value 
to a variable
Indexing into an 
array
Calling a method
Returning from a 
method
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Estimating performance

Random Access Machine 
(RAM) Model has:

A CPU
An potentially unbounded bank of 
memory cells
Each cell can hold an arbitrary 
number or character
Memory cells are numbered
Accessing any cell takes unit time

0
1
2

Count Primitive Operations
= time needed by RAM model
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Running Time (§1.1) 
The running time grows with 
the input size.
Running time varies with 
different input
Worst-case: look at input 
causing most operations
Best-case: look at input 
causing least number of 
operations
Average case: between best 
and worst-case.
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Counting Primitive 
Operations (§1.1)

Worst-case primitive operations count, as a 
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 2
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Counting Primitive 
Operations (§1.1)

Best-case primitive operations count, as a 
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 0

{ increment counter i } 2(n − 1)
return currentMax 1

Total 5n
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Defining Worst [W(n)], Best 
[B(N)], and Average [A(n)]

Let In = set of all inputs of size n. 
Let t(i) = # of primitive ops by alg on input i.
W(n) = maximum t(i) taken over all i in In

B(n) = minimum t(i) taken over all i in In

A(n) =                  , p(i) = prob. of i occurring.

We focus on the worst case
Easier to analyze
Usually want to know how bad can algorithm be
average-case requires knowing probability; often 
difficult to determine 
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Experimental Studies (§ 1.6)

Implement your algorithm
Run your implementation 
with inputs of varying size 
and composition
Measure running time of 
your implementation (e. 
g., with 
System.currentTimeMillis())
Plot the results
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Limitations of Experiments

Implement may be time-consuming and/or 
difficult
Results may not be indicative of the running 
time on other inputs not included in the 
experiment. 
In order to compare two algorithms, the same 
hardware and software environments must be 
used
Infeasible to test for correct-
ness on all possible inputs.
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Theoretical Analysis
Uses a high-level description of the algorithm 
instead of an implementation
Characterizes running time as a function of 
the input size, n.
Takes into account all possible inputs
Allows us to evaluate the speed of an 
algorithm independent of the 
hardware/software environment
Can prove correctness
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Growth Rate of Running Time

Changing the hardware/ software 
environment 

Affects running time by a constant factor;
Does not alter its growth rate 

Example: linear growth rate of 
arrayMax is an intrinsic property of 
algorithm.
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Growth Rates

Growth rates of 
functions:

Linear ≈ n
Quadratic ≈ n2

Cubic ≈ n3

In a log-log chart, 
the slope of the line 
corresponds to the 
growth rate of the 
function (for 
polynomials)
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Constant Factors

The growth rate is 
not affected by

constant factors or 
lower-order terms

Examples
102n + 105 is a linear 
function
105n2 + 108n is a 
quadratic function
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Big-Oh and Growth Rate
The big-Oh notation gives an upper bound on the 
growth rate of a function
The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)
We can use the big-Oh notation to rank functions 
according to their growth rate

YesYesSame growth
YesNof(n) grows more
NoYesg(n) grows more

g(n) is O(f(n))f(n) is O(g(n))
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Big-Oh Notation (§1.2)
Given functions f(n) and 
g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0

Example: 2n + 10 is O(n)
2n + 10 ≤ cn
(c − 2) n ≥ 10
n ≥ 10/(c − 2)
Pick c = 3 and n0 = 10
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Big-Oh Example

Example: the function 
n2 is not O(n)

n2 ≤ cn
n ≤ c
The above inequality 
cannot be satisfied 
since c must be a 
constant 
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More Big-Oh Examples
7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

3 log n + log log n
3 log n + log log n is O(log n)
need c > 0 and n0 ≥ 1 such that 3 log n + log log n ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 2
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Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions
Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class
Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
asymptotic analysis = determining an algorithms 
running time in big-Oh notation
asymptotic analysis steps:

We find the worst-case number of primitive operations 
executed as a function of the input size
We express this function with big-Oh notation

Example:
We determine that algorithm arrayMax executes at most 
7n − 2 primitive operations
We say that algorithm arrayMax “runs in O(n) time”

or “runs in order n time”
Since constant factors and lower-order terms are 
eventually dropped, we can disregard them when 
counting primitive operations!
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Intuition for Asymptotic 
Notation

Big-Oh
f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega
f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta
f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

little-oh
f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
f(n) is ω(g(n)) if is asymptotically strictly greater than g(n)
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Relatives of Big-Oh
big-Omega

f(n) is Ω(g(n)) if there is a constant c > 0 
and an integer constant n0 ≥ 1 such that 
f(n) ≥ c•g(n) for n ≥ n0

big-Theta
f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 and an 
integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0

little-oh
f(n) is o(g(n)) if, for any constant c > 0, there is an integer 
constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

little-omega
f(n) is ω(g(n)) if, for any constant c > 0, there is an integer 
constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0
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Example Uses of the 
Relatives of Big-Oh

f(n) is ω(g(n)) if, for any constant c > 0, there is an integer constant n0 ≥
0 such that f(n) ≥ c•g(n) for n ≥ n0

need 5n0
2 ≥ c•n0 → given c, the n0 that satifies this is n0 ≥ c/5 ≥ 0

5n2 is ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1 
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

5n2 is Ω(n2)
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properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = alogbx
logba = logxa/logxb

properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a logab

bc = a c*logab

Summations  (Sec. 1.3.1)
Logarithms and Exponents (Sec. 1.3.2)

Proof techniques (Sec. 1.3.3)
Basic probability (Sec. 1.3.4)

Math you need to know
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Proofs are
a sequence of statements
Each statement is true, based on

Definitions
Hypotheses
Well-known math principles
Previous statements

Statements lead towards conclusion

Math you need to know
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Induction proof

Method of proving statements for 
(infinitely) large values of n, (n is the 
induction variable).
Math way of using a loop in a proof. 
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Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then xn – yn is divisible by x-y.

Let Sn denote “for all x and y, xn – yn is divisible by x-
y”
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Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then xn – yn is divisible by x-y.

Let Sn denote “for all x and y, xn – yn is divisible by x-
y”
Proof with induction:

Base case: show S1

Inductive Hypothesis (IH): for all k ≥1, if Sk is 
true, than Sk+1 is true.

OR
Inductive Hypothesis (IH): for all k ≥2, if Sk-1 is 
true, than Sk is true.
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Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then xn – yn is divisible by x-y.

Let Sn denote “for all x and y, xn – yn is divisible by x-
y”
Proof with induction:



TCSS343 winter 03, analysis version 1.0 6

Analysis of Algorithms v1.2 31

More math tools & proofs 

Correctness of computing average
loop invariants and induction

Recurrence equations
Strong induction
Cost of recursive algorithms with 
recurrence equations.
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Computing Prefix Averages
asymptotic analysis 
examples: two algorithms 
for prefix averages
The i-th prefix average of 
an array X is average of the 
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Computing the array A of 
prefix averages of another 
array X has applications to 
financial analysis
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Prefix Averages (Quadratic)
The following algorithm computes prefix averages in 
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n

for i ← 0 to n − 1 do n
s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1
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Arithmetic Progression

The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)
The sum of the first n
integers is n(n + 1) / 2

There is a simple visual 
proof of this fact

Thus, algorithm 
prefixAverages1 runs in 
O(n2) time 
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Prefix Averages (Linear, non-
recursive)

The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations
A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1
Algorithm prefixAverages2 runs in O(n) time 
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Prefix Averages (Linear)
The following algorithm computes prefix averages in 
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n)
Input array X of  n ≥ 1 integer. 

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1]
if n=1

A[0] ← X[0]
return A[0]

tot ← recPrefixSumAndAverage(X,A,n-1) 
tot ← tot + X[n-1]
A[n-1] ← tot / n
return tot;
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Prefix Averages (Linear)
The following algorithm computes prefix averages in 
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of  n ≥ 1 integer. 

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1] #operations
if n=1 1

A[0] ← X[0] 3
return A[0] 2

tot ← recPrefixSumAndAverage(X,A,n-1) 3+T(n-1)
tot ← tot + X[n-1] 4
A[n-1] ← tot / n 4
return tot; 1
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Prefix Averages, Linear

Recurrence equation
T(1) = 6
T(n) = 13 + T(n-1)  for  n>1.

Solution of recurrence is 
T(n) = 13(n-1) + 6 

T(n) is O(n).


