
1

Elementary Data 
Structures

Stacks, Queues, Vectors, 
Lists & Sequences
Trees

Elementary Data Structures v1.2 2

The Stack ADT (§2.1.1)
The Stack ADT stores 
arbitrary objects
Insertions and deletions 
follow the last-in first-out 
scheme
Think of a spring-loaded 
plate dispenser
Main stack operations:

push(object): inserts an 
element
object pop(): removes and 
returns the last inserted 
element

Auxiliary stack 
operations:

object top(): returns the 
last inserted element 
without removing it
integer size(): returns the 
number of elements 
stored
boolean isEmpty(): 
indicates whether no 
elements are stored

Elementary Data Structures v1.2 3

Applications of Stacks

Direct applications
Page-visited history in a Web browser
Undo sequence in a text editor
Chain of method calls in the Java Virtual 
Machine or C++ runtime environment

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

Elementary Data Structures v1.2 4

Array-based Stack (§2.1.1)

A simple way of 
implementing the 
Stack ADT uses an 
array
We add elements 
from left to right
A variable t keeps 
track of the index of 
the top element 
(size is t+1)

S
0 1 2 t

…

Algorithm pop():
if isEmpty() then

throw EmptyStackException
else 
t ← t − 1
return S[t + 1]

Algorithm push(o)
if t = S.length − 1 then

throw FullStackException
else 
t ← t + 1
S[t] ← o

Elementary Data Structures v1.2 5

The Queue ADT (§2.1.2)
The Queue ADT stores arbitrary 
objects
Insertions and deletions follow 
the first-in first-out scheme
Insertions are at the rear of the 
queue and removals are at the 
front of the queue
Main queue operations:

enqueue(object): inserts an 
element at the end of the 
queue
object dequeue(): removes and 
returns the element at the front 
of the queue

Auxiliary queue 
operations:

object front(): returns the 
element at the front without 
removing it
integer size(): returns the 
number of elements stored
boolean isEmpty(): indicates 
whether no elements are 
stored

Exceptions
Attempting the execution of 
dequeue or front on an 
empty queue throws an 
EmptyQueueException

Elementary Data Structures v1.2 6

Applications of Queues

Direct applications
Waiting lines
Access to shared resources (e.g., printer)
Multiprogramming

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures



2

Elementary Data Structures v1.2 7

Singly Linked List
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores

element
link to the next node

next

elem node

A B C D

∅

Elementary Data Structures v1.2 8

Queue with a Singly Linked List
We can implement a queue with a singly linked list

The front element is stored at the first node
The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements

Elementary Data Structures v1.2 9

The Vector ADT
The Vector ADT 
extends the notion of 
array by storing a 
sequence of arbitrary 
objects
An element can be 
accessed, inserted or 
removed by specifying 
its rank (number of 
elements preceding it)
An exception is 
thrown if an incorrect 
rank is specified (e.g., 
a negative rank)

Main vector operations:
object elemAtRank(integer r): 
returns the element at rank r 
without removing it
object replaceAtRank(integer r, 
object o): replace the element at 
rank with o and return the old 
element
insertAtRank(integer r, object o): 
insert a new element o to have 
rank r
object removeAtRank(integer r): 
removes and returns the element 
at rank r

Additional operations size() and 
isEmpty()

Elementary Data Structures v1.2 10

Applications of Vectors

Direct applications
Sorted collection of objects (elementary 
database)

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

Elementary Data Structures v1.2 11

Array-based Vector
Use an array V of size N
A variable n keeps track of the size of the vector 
(number of elements stored)
Operation elemAtRank(r) is implemented in O(1)
time by returning V[r]

V
0 1 2 nr

Elementary Data Structures v1.2 12

Insertion
In operation insertAtRank(r, o), we need to make 
room for the new element by shifting forward the 
n − r elements V[r], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 nr

V
0 1 2 n

o
r



3

Elementary Data Structures v1.2 13

Deletion
In operation removeAtRank(r), we need to fill the 
hole left by the removed element by shifting 
backward the n − r − 1 elements V[r + 1], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 n

o
r

V
0 1 2 nr

Elementary Data Structures v1.2 14

Performance
In the array based implementation of a Vector

The space used by the data structure is O(N)
size, isEmpty, elemAtRank and replaceAtRank run in 
O(1) time
insertAtRank and removeAtRank run in O(n) time

If we use the array in a circular fashion,
insertAtRank(0) and removeAtRank(0) run in 
O(1) time
In an insertAtRank operation, when the array 
is full, instead of throwing an exception, we 
can replace the array with a larger one

Elementary Data Structures v1.2 15

Position ADT
The Position ADT models the notion of 
place within a data structure where a 
single object is stored
It gives a unified view of diverse ways 
of storing data, such as

a cell of an array
a node of a linked list

Just one method:
object element(): returns the element 
stored at the position

Elementary Data Structures v1.2 16

List ADT (§2.2.2)

The List ADT models a 
sequence of positions 
storing arbitrary objects
It establishes a 
before/after relation 
between positions
Generic methods:

size(), isEmpty()

Query methods:
isFirst(p), isLast(p)

Accessor methods:
first(), last()
before(p), after(p)

Update methods:
replaceElement(p, o), 
swapElements(p, q) 
insertBefore(p, o), 
insertAfter(p, o),
insertFirst(o), 
insertLast(o)
remove(p)

Elementary Data Structures v1.2 17

Doubly Linked List
A doubly linked list provides a natural 
implementation of the List ADT
Nodes implement Position and store:

element
link to the previous node
link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

Elementary Data Structures v1.2 18

Insertion
We visualize operation insertAfter(p, X), which returns position q

A B X C

A B C

p

A B C

p

X

q

p q



4

Elementary Data Structures v1.2 19

Deletion
We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C
Elementary Data Structures v1.2 20

Performance
In the implementation of the List ADT 
by means of a doubly linked list

The space used by a list with n elements is 
O(n)
The space used by each position of the list 
is O(1)
All the operations of the List ADT run in 
O(1) time
Operation element() of the 
Position ADT runs in O(1) time

Elementary Data Structures v1.2 21

Sequence ADT
The Sequence ADT is the 
union of the Vector and 
List ADTs
Elements accessed by

Rank, or
Position

Generic methods:
size(), isEmpty()

Vector-based methods:
elemAtRank(r), 
replaceAtRank(r, o), 
insertAtRank(r, o), 
removeAtRank(r)

List-based methods:
first(), last(), 
before(p), after(p), 
replaceElement(p, o), 
swapElements(p, q), 
insertBefore(p, o), 
insertAfter(p, o), 
insertFirst(o), 
insertLast(o), 
remove(p)

Bridge methods:
atRank(r), rankOf(p)

Elementary Data Structures v1.2 22

Applications of Sequences
The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered 
collection of elements
Direct applications:

Generic replacement for stack, queue, vector, or 
list
small database (e.g., address book)

Indirect applications:
Building block of more complex data structures

Elementary Data Structures v1.2 23

Array-based Implementation
We use a 
circular array 
storing 
positions 
A position 
object stores:

Element
Rank

Indices f and l
keep track of 
first and last 
positions

0 1 2 3
positions

elements

S

lf
Elementary Data Structures v1.2 24

Sequence Implementations

nninsertAtRank, removeAtRank
11insertFirst, insertLast
1ninsertAfter, insertBefore

n1replaceAtRank
11replaceElement, swapElements

n1atRank, rankOf, elemAtRank
11size, isEmpty

1nremove

11first, last, before, after

ListArrayOperation



5

Elementary Data Structures v1.2 25

Iterators
An iterator abstracts the 
process of scanning through 
a collection of elements
Methods of the ObjectIterator 
ADT:

object object()
boolean hasNext()
object nextObject()
reset()

Extends the concept of 
Position by adding a traversal 
capability
Implementation with an array 
or singly linked list

An iterator is typically 
associated with an another 
data structure
We can augment the Stack, 
Queue, Vector, List and 
Sequence ADTs with method:

ObjectIterator elements()

Two notions of iterator:
snapshot: freezes the 
contents of the data 
structure at a given time
dynamic: follows changes to 
the data structure

Elementary Data Structures v1.2 26

Trees (§2.3)
In computer science, a 
tree is an abstract model 
of a hierarchical 
structure
A tree consists of nodes 
with a parent-child 
relation
Applications:

Organization charts
File systems
Programming 
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

Elementary Data Structures v1.2 27

Tree ADT (§2.3.1)
We use positions to abstract 
nodes
Generic methods:

integer size()
boolean isEmpty()
objectIterator elements()
positionIterator positions()

Accessor methods:
position root()
position parent(p)
positionIterator children(p)

Query methods:
boolean isInternal(p)
boolean isExternal(p)
boolean isRoot(p)

Update methods:
swapElements(p, q)
object replaceElement(p, o)

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT

Elementary Data Structures v1.2 28

Preorder Traversal (§2.3.2)
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

Elementary Data Structures v1.2 29

Postorder Traversal (§2.3.2)
In a postorder traversal, a 
node is visited after its 
descendants
Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Elementary Data Structures v1.2 30

Binary Trees (§2.3.3)
A binary tree is a tree where:

Each internal node has at most 
two children

A proper binary tree is a binary 
tree where:

each internal node has exactly two 
children
The children are an ordered pair, 
denoted left child and right child.

Alternative recursive definition: a 
(proper) binary tree is either

a tree consisting of a single node, 
or
a tree whose root has an ordered 
pair of children, each of which is a 
(proper) binary tree

Applications:
arithmetic expressions
decision processes
searching

A

B C

F GD E

H I



6

Elementary Data Structures v1.2 31

Arithmetic Expression Tree
Binary tree associated with an arithmetic expression

internal nodes: operators
external nodes: operands

Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

Elementary Data Structures v1.2 32

Decision Tree
Binary tree associated with a decision process

internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's Denny’s

Yes No

Yes No Yes No

Elementary Data Structures v1.2 33

Properties of (Proper) Binary 
Trees

Notation
n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:
e = i + 1
n = 2e − 1
h ≤ i
h ≤ (n − 1)/2
e ≤ 2h

h ≥ log2 e
h ≥ log2 (n + 1) − 1

Elementary Data Structures v1.2 34

Inorder Traversal
In an inorder traversal a 
node is visited after its left 
subtree and before its right 
subtree
Application: draw a binary 
tree

x(v) = inorder rank of v
y(v) = depth of v

Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4

Elementary Data Structures v1.2 35

Euler Tour Traversal
Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:

on the left (preorder)
from below (inorder)
on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×

Elementary Data Structures v1.2 36

Printing Arithmetic Expressions
Specialization of an inorder 
traversal

print operand or operator 
when visiting node
print “(“ before traversing left 
subtree
print “)“ after traversing right 
subtree

Algorithm printExpression(v)
if isInternal (v)

print(“(’’)
inOrder (leftChild (v))

print(v.element ())
if isInternal (v)

inOrder (rightChild (v))
print (“)’’)

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))



7

Elementary Data Structures v1.2 37

∅

Linked Data Structure for 
Representing Trees (§2.3.4)

A node is represented by 
an object storing

Element
Parent node
Sequence of children 
nodes

Node objects implement 
the Position ADT

B

DA

C E

F

B

∅ ∅

A D F

∅

C

∅

E
Elementary Data Structures v1.2 38

Linked Data Structure for 
Binary Trees

A node is represented 
by an object storing

Element
Parent node
Left child node
Right child node

Node objects implement 
the Position ADT

B

DA

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

Elementary Data Structures v1.2 39

Array-Based Representation of 
Binary Trees

nodes are stored in an array

…

let rank(node) be defined as follows:
rank(root) = 1
if node is the left child of parent(node), 

rank(node) = 2*rank(parent(node))
if node is the right child of parent(node), 

rank(node) = 2*rank(parent(node))+1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J


