'Elementary Data _
Structures

Stacks, Queues, Vectors,
Lists & Sequences

Trees

‘The Stack ADT (§2.1.1)

4 The Stack ADT stores
arbitrary objects
Insertions and deletions € Auxiliary stack

follow the last-in first-out operations:
scheme = object top(): returns the
4 Think of a spring-loaded last inserted element
plate dispenser without removing it
Main stack operations: = integer size(): returns the
= push(object): inserts an number of elements
element stored)
= object pop(): removes and = boolean isEmpty():
returns the last inserted indicates whether no
element elements are stored
Elementary Data Structures v1.2 2

Applications of Stacks

#Direct applications
= Page-visited history in a Web browser
= Undo sequence in a text editor

= Chain of method calls in the Java Virtual
Machine or C++ runtime environment

#Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Elementary Data Structures v1.2 3

Array-based Stack (§2.1.1)

Algorithm pop():
if isEmpty() then
throw EmptyStackException
else

A simple way of
implementing the
g:?acylf ADT uses an fet_1

+1

We add elements refum Ste+ 1]
from left to right Algorithm push(o)

& A variable t keeps if t=S.length — 1 then
track of the index of throw FullStackException

the top element else
(size is t+1) tt+1
S[f] <o
sLITTTTTIN - SNETTTTT]
012 t
Elementary Data Structures v1.2 4

‘The Queue ADT (§2.1.2)

4 The Queue ADT stores arbitrary ¢ Auxiliary queue

objects operations:
Insertions and deletions follow = object front(): returns the
the first-in first-out scheme element at the front without
Insertions are at the rear of the removing it
queue and removals are at the = integer size(): returns the

front of the queue number of elements stored

boolean isEmpty(): indicates
whether no elements are

4 Main queue operations:

= enqueue(object): inserts an stored
element at the end of the .
queue 4 Exceptions
« object dequeue(): removes and = Attempting the execution of
returns the element at the front dequeue or front on an
of the queue empty queue throws an
EmptyQueueException
Elementary Data Structures v1.2 5

Applications of Queues

#Direct applications
= Waiting lines
= Access to shared resources (e.g., printer)
= Multiprogramming
#Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Elementary Data Structures v1.2 6

‘Singly Linked List

@ A singly linked list is a ST

concrete data structure { next |
consisting of a sequence | i

‘
of nodes | i
‘ ‘
Each node stores 3 3
= element | elem node |

= link to the next node B

III'—I—'|I|'—|—'|I|°—|—'|T|°—|—’®

O +—

B C

Elementary Data Structures v1.2 7

Queue with a Singly Linked List

4 We can implement a queue with a singly linked list
= The front element is stored at the first node
= The rear element is stored at the last node

4 The space used is O(n) and each operation of the
Queue ADT takes O(1) time p

" nodes

/
|
|
|
|
|
T

AT e

\ /

A

¥ v \
e |

& @ |
elements

Elementary Data Structures v1.2 8

‘The Vector ADT

|4 The Vector ADT # Main vector operations:
extends the notion of = object elemAtRank(integer r):
array by storing a returns the element at rank r
sequence of arbitrary without removing it
objects = object replaceAtRank(integer r,
object 0): replace the element at

4 An element can be rank with o and return the old

accessed, inserted or element

insertAtRank(integer r, object 0):

removed by specifying i
insert a new element o to have

its rank (number of

P rank r
elements prec_edlng it) = object removeAtRank(integer r):
4 An exception is removes and returns the element
thrown if an incorrect atrank r
rank is specified (e.g., @ Additional operations size() and
a negative rank) iSEmpty()
Elementary Data Structures v1.2 9

Applications of Vectors

#Direct applications

= Sorted collection of objects (elementary
database)

#Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Elementary Data Structures v1.2 10

Array-based Vector

Use an array V of size N

A variable n keeps track of the size of the vector
(number of elements stored)

% Operation elemAtRank(r) is implemented in O(1)
time by returning ¥{r]

VT T T TITTTTTTITTITIT]
012 r n

Elementary Data Structures v1.2 11

Insertion

In operation insertAtRank(r, 0), we need to make
room for the new element by shifting forward the
n—relements Vr], ..., V[n—1]

4 In the worst case (r = 0), this takes O(n) time

VOITTTTTTTTTTITITTITT]
012 r n

(OO
VIIIITTTITTTTTTITTITT]
012 r n

VEOIT T T T TTTTTTTITT]
012 r n

Elementary Data Structures v1.2 12

Deletion

In operation removeAtRank(r), we need to fill the
hole left by the removed element by shifting
backward the n —r — 1 elements ¥V[r+ 1], ..., V[n — 1]

In the worst case (r = 0), this takes O(n) time

VIITT T Tl TTTTTTITTT]
012 r n

A2 22 A
VIIIITTTITTTTTITTITITT1]
012 r n

VIITTTTTITTTTITTTITT]
012 r n

Elementary Data Structures v1.2 13

Performance

4 In the array based implementation of a Vector

= The space used by the data structure is O(V)
= size, isEmpty, elemAtRank and replaceAtRank run in
o(1) time

» insertAtRank and removeAtRank run in O(n) time

If we use the array in a circular fashion,
insertAtRank(0) and removeAtRank(0) run in
0O(1) time

#1n an insertAtRank operation, when the array
is full, instead of throwing an exception, we
can replace the array with a larger one

Elementary Data Structures v1.2 14

Position ADT

The Position ADT models the notion of
place within a data structure where a
single object is stored

It gives a unified view of diverse ways
of storing data, such as

= a cell of an array
= a node of a linked list
4 Just one method:

= object element(): returns the element
stored at the position

Elementary Data Structures v1.2 15

List ADT (§2.2.2)

% The List ADT models a Accessor methods:
sequence of positions w first(), last()
storing arbitrary objects = before(p), after(p)

It establishes a 4 Update methods:
before/after relation replaceElement(p, o),
between positions swapElements(p, q)

Generic methods: insertBefore(p, 0),

. . insertAfter(p, o),
» size(), isEmpty() insertFirst((op))

4 Query methods: insertLast(o)
= isFirst(p), isLast(p) = remove(p)
Elementary Data Structures v1.2 16

Doubly Linked List

A doubly linked list provides a natural
implementation of the List ADT

{
|
|
|

Nodes implement Position and store: i
|
i
|
|

/

= element

= link to the previous node

= link to the next node e =
Special trailer and header nodes

.
1
|

header nodes/positions | trailer

E:Di»l,l@l,l@l;l@l,lm
- X 1Y L —

B
\\ ‘Q el,'

Elementary Data Structures v1.2 17

Insertion

@ We visualize operation insertAfter(p, X), which returns position q

p
K S 2 Pl K e 2 P S e 2 P K S)
kA B kC

p q
15 2 2 K < 23 12 K S 2 1 S e A P S S
\ A B X \ C
Elementary Data Structures v1.2 18

Deletion

| & We visualize remove(p), where p = last()

B@»Irl@lrl@lrl@ r[<E]
xA B C \D

E}:\\}'I{I@IH@I(I@

[2 7 e 7 2 s e 21 S
kA B \C

Elementary Data Structures v1.2 19

Performance
‘%In the implementation of the List ADT

by means of a doubly linked list

= The space used by a list with n elements is
O(n)

= The space used by each position of the list
is 0(1)

= All the operations of the List ADT run in
0o(1) time

= Operation element() of the
Position ADT runs in O(1) time

Elementary Data Structures v1.2 20

‘Sequence ADT

The Sequence ADT is the 4 List-based methods:

union of the Vector and « first(), last(),
List ADTs before(p), after(p),
Elements accessed by replaceElement(p, o),
= Rank, or swapElements(p, q),
« Positi insertBefore(p, 0),
OSI. on insertAfter(p, o),
4 Generic methods: insertFirst(o)
= size(), isEmpty() insertLast(o),
Vector-based methods: remove(p)
. eleTAtﬁgk(?E) # Bridge methods:
replaceAtRank(r, o),
insertAtRank(r, 0), = atRank(r), rankOf(p)
removeAtRank(r)
Elementary Data Structures v1.2 21

Applications of Sequences

The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

4 Direct applications:

= Generic replacement for stack, queue, vector, or
list
= small database (e.g., address book)

Indirect applications:

= Building block of more complex data structures

Elementary Data Structures v1.2 22

& We use a elements I
circular array Al
storing e 4
positions

A position
object stores:

= Element
= Rank I N

Indices fand 1~ A\ __)) __ positions

keep track of

first and last S| |1|\|1|/| | | |

positions
f)

Elementary Data Structures v1.2 23

|
|
|
)

Sequence Implementations

Operation Array List
size, isEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, before, after 1 1
replaceElement, swapElements 1 1
replaceAtRank 1 n
insertAtRank, removeAtRank n n
insertFirst, insertLast 1 1
insertAfter, insertBefore n 1
remove n 1

Elementary Data Structures v1.2 24

Tterators

An iterator abstracts the # An iterator is typically
process of scanning through associated with an another
a collection of elements data structure

- .

% l/\-\/lSEFhOdS of the ObjectIterator @ We can augment the Stack,

.b' t object() Queue, Vector, List and
= “object obje Sequence ADTs with method:
= boolean hasNext() N
« object nextObject() = Objectlterator elements()
« reset() # Two notions of iterator:

Extends the concept of = snapshot: freezes the
Position by adding a traversal contents of the data
capability structure at a given time

4 Implementation with an array = dynamic: follows changes to
or singly linked list the data structure

Elementary Data Structures v1.2 25

| Trees (§2.3)

4 In computer science, a
tree is an abstract model
of a hierarchical
structure

A tree consists of nodes
with a parent-child
relation

% Applications:

= Organization charts
= File systems

= Programming
environments

Computers"R"Us

Manufacturing

[International] [Laptops] [Desktops]

Elementary Data Structures v1.2 26

Tree ADT (§2.3.1)

We use positions to abstract 4 Query methods:
nodes = boolean isInternal(p)

4 Generic methods: = boolean isExternal(p)

= integer size() = boolean isRoot(p)

= boolean isEmpty() 4 Update methods:

= objectlterator elements() = swapElements(p, q)

= positionIterator positions() = object replaceElement(p, o)
@ Accessor methods: # Additional update methods

= position root() may be defined by data

= position parent(p) structures implementing the

= positionIterator children(p) Tree ADT

Elementary Data Structures v1.2 27

Preorder Traversal (§2.3.2)

\
Algorithm preOrder(v)
Visit(v)
for each child w of v

4 A traversal visits the nodes of a
tree in a systematic manner

In a preorder traversal, a node is
visited before its descendants

4 Application: print a structured preorder (w)
document

1
Make Money Fast!

2

1. Motivations [2. Methods] [References]
4 ° k k
P 2.1 Stocl 2.2 Ponzi 2.3 Banl
L2 fvilisy [Fraud] [Scheme] [Robbery]
Elementary Data Structures v1.2 28

Postorder Traversal (§2.3.2) \

In a postorder traversal, a Algorithm postOrder(v)
node is visited after its for each child w of »

descendants
Application: compute space postOrder (w)
used by files in a directory and Visit(v)

its subdirectories

homeworks/

1 2
hic.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

Elementary Data Structures v1.2 29

‘Binary Trees (§2.3.3)

A binary tree is a tree where: @ Applications:
= Each internal node has at most

= arithmetic expressions

o chlld!—en . . = decision processes
@ A proper binary tree is a binary « searching
tree where:
= each internal node has exactly two
children

= The children are an ordered pair,

denoted left child and right child.
@ Alternative recursive definition: a
(proper) binary tree is either

= a tree consisting of a single node,
or

= a tree whose root has an ordered
pair of children, each of which is a
(proper) binary tree

Elementary Data Structures v1.2 30

Arithmetic Expression Tree

4 Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

4 Example: arithmetic expression tree for the
expression (2 x (@a—-1) + (3 x b))

Elementary Data Structures v1.2 31

Decision Tree

4 Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

4 Example: dining decision

Want a fast meal?

Yes No

[How about coffee?] [On expense account?]

Yes No Yes No
|Starbucks| |In ‘N Outl Antoine's Denny’s

Elementary Data Structures v1.2 32

Properties of (Proper) Binary
Trees

% Notation @ Properties:
n_number of nodes me=i+1
e number of e n=2e—1
external nodes .
i number of internal = h<i
nodes h<(n-1)2
h height e<2h

h>log, e
h>log,(n+1)—1

Elementary Data Structures v1.2 33

Inorder Traversal

‘/0 In an inorder traversal a Algorithm inOrder(v)
node is visited after its left if isInternal
subtree and before its right if isInternal (v)

subtree inOrder (leftChild (v))
4 Application: draw a binary visit(v)
tree

if isInternal (v)
inOrder (rightChild (v))

= x(v) = inorder rank of v
= y(v) = depth of v 6

Elementary Data Structures v1.2 34

'Euler Tour Traversal

Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:

= on the left (preorder)

= from below (inorder)

= on the right (postorder) \ 4

Elementary Data Structures v1.2 35

Printing Arithmetic Expressions

4 Specialization of an inorder Algorithm printExpression(v)

fraversal if isInternal (v)
= print operand or operator AN
when visiting node print("("")
= print “(" before traversing left 7 :
Subtree inOrder (leftChild (v))

= print)" after traversing right print(v.element ())
subtree

if isInternal (v)
inOrder (rightChild (v))
print (*)")

((2x(@-1))+ (3 xb))

Elementary Data Structures v1.2 36

Linked Data Structure for
Representing Trees (§2.3.4)

E

A node is represented by
an object storing

= Element

= Parent node

= Sequence of children
nodes

+

Node objects implement
the Position ADT

Elementary Data Structures v1.2 37

Linked Data Structure for

‘Binary Trees

A node is represented

by an object storing
= Element
= Parent node
= Left child node
= Right child node

% Node objects implement [Z
the Position ADT

Elementary Data Structures v1.2

Array-Based Representation of
~Binary Trees

\@nodes are stored in an array
IN[N[E)
\\ \ ' l \\, 2

m et rank(node) be defined as follows:

m rank(root) = 1

4 5 6

m if node is the left child of parent(node),
rank(node) = 2*rank(parent(node))

m if node is the right child of parent(node),
rank(node) = 2*rank(parent(node))+1

Elementary Data Structures v1.2 39

