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Outline and Reading
Graphs (§6.1)

Definitions
Applications
Terminology
Properties
ADT

Data structures for graphs (§6.2)
Edge list structure
Adjacency list structure
Adjacency matrix structure
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Graph
A graph is a pair (V, E), where

V is a set of nodes, called vertices
E is a collection of edges (pairs of vertices)
Vertices and edges are positions and store elements

Graphs useful for representing real-world relationships:
vertex = airport
edge = flight route, storing mileage
Abstract real-world problems into problems on graphs

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142



Graphs 2/21/2003 9:27 AM

2

Graphs version 1.3 4

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
Electronic circuits

Printed circuit board
Integrated circuit

Transportation networks
Highway network
Flight network

Computer networks
Local area network
Internet
Web

Databases
Entity-relationship diagram
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Sample problems

What is cheapest way to fly from X to Y?
If airport X closes from bad weather, can I 
still fly between every other pair of cities?
Many classes have prereqs; in what order can 
I take the classes for my major?
How much traffic can flow between 
intersection X and intersection Y
How can I minimize the amount of wiring 
needed to connect some outlets together?
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Edge Types
Directed edge

ordered pair of vertices (u,v)
first vertex u is the origin
second vertex v is the destination
e.g., a flight

Undirected edge
unordered pair of vertices (u,v)
e.g., a flight route

Directed graph
all the edges are directed
e.g., route network

Undirected graph
all the edges are undirected
e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD849
miles
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Terminology
End vertices (or endpoints) of an 
edge

U and V are the endpoints of a
Edges incident on a vertex

a, d, and b are incident on V
Adjacent vertices

U and V are adjacent
Degree of a vertex

X has degree 5 
Parallel edges (typically not used)

h and i are parallel edges
Self-loop (typically not used)

j is a self-loop
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P1

Terminology (cont.)
Path

sequence of alternating vertices 
and edges 
begins and ends with some vertex
each edge is preceded and 
followed by its endpoints

Simple path
path such that all its vertices and 
edges are distinct

Reachable
path exists 

Examples
P1=(V,b,X,h,Z) is a simple path
P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple
Z is reachable from U
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Terminology (cont.)
Cycle

circular sequence of alternating 
vertices and edges 
each edge is preceded and 
followed by its endpoints
edges traversed only in one 
direction

Simple cycle
cycle such that all its vertices 
and edges are distinct

Examples
C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 
simple cycle
C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple
C3=(X,h,Z,h,X) is not a cycle
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Subgraphs
A subgraph S of a graph 
G is a graph such that 

The vertices of S are a 
subset of the vertices of G
The edges of S are a 
subset of the edges of G

A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph
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Connectivity

A graph is 
connected if there is 
a path between 
every pair of 
vertices
A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that

T is connected
T has no cycles

Different definition than a 
rooted tree

A forest is an undirected 
graph without cycles
The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree
A spanning tree is not 
unique unless the graph is 
a tree
Spanning trees have 
applications to the design 
of communication 
networks
A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is 

counted twice
Property 2

In an undirected graph 
(with no self-loops or 
parallel edges)
m ≤ n (n − 1)/2

Proof: at most one edge 
for every unique 
combination of 2 
vertices

What is the bound on m
for a directed graph?

Example
n = 4
m = 6
deg(v) = 3 
for all 
vertices
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Main Methods of the Graph ADT
Vertices and Edges
accessor method:

Object element()
Update methods

Vertex insertVertex(o)
Edge insertEdge(v, w, o)
void removeVertex(v)
void removeEdge(e)

Accessor methods
int numVertices()
int numEdges()
Vertex aVertex()

Accessor methods
Iterator vertices()
Iterator edges()
Iterator incidentEdges(v)
Vertex[2] endVertices(e) 
Vertex opposite(v, e)
boolean areAdjacent(v, w)

Methods for directed edges
Vertex origin(e)
Vertex destination(e)
boolean isDirected(e)
Edge insertDirectedEdge(v, w, o)
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Edge List Structure
Vertex object

element

Edge object
element
origin vertex object
destination vertex object
directed boolean flag

Vertex sequence
sequence of vertex 
objects

Edge sequence
sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d
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Graph ADT with Positions

Recall
Position = place where item is stored in a sequence

In Goodrich’s book:
A Vertex is a Position
An Edge is a Position

Features of Positions
Enables faster removal
Implementation slightly more complex
Unnecessary when removeVertex and removeEdge are not 
used
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Edge List Structure (w/ Positions)
Vertex object

element
reference to position in 
vertex sequence

Edge object
element
origin vertex object
destination vertex object
reference to position in 
edge sequence

Vertex sequence
sequence of vertex 
objects

Edge sequence
sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d
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Adjacency List Structure
Edge list 
structure
Each Vertex now 
stores incidence 
sequence

sequence of 
references to 
edge objects of 
incident edges

u

v

w
a b

a

u v w

b
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Adjacency List Structure (w/ 
Positions)

Edge list structure 
(w/ Positions)
Incidence sequence 
for each vertex

sequence of 
references to edge 
objects of incident 
edges

Augmented edge 
objects

references to 
associated 
positions in 
incidence 
sequences of end 
vertices

u

v

w
a b

a

u v w

b
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Adjacency Matrix Structure
Edge list structure
Augmented vertex 
objects

Integer key (index) 
associated with vertex

2D-array adjacency 
array

Reference to edge 
object for adjacent 
vertices
Null for non 
nonadjacent vertices

The “old fashioned” 
version just has 0 for 
no edge and 1 for edge

u

v

w
a b

2

1

0
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∅∅

∅
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a

u v w0 1 2
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Asymptotic Performance

O(n2 )O(n + m)O(n + m)Space

O(n2 )O( deg(v) )O(m)removeVertex(v)

O(1)O(1)O(1)insertEdge(v, w, o)

O(n2 )O(1)O(1)insertVertex(o)

O(1)O(1)O(1)removeEdge(e)

O(1)O( min(deg(v),
deg(w)) )O(m)areAdjacent (v, w)

O(n)O( deg(v) )O(m)Iterating through
incidentEdges(v)

Adjacency 
Matrix

Adjacency
List

Edge
List

n vertices, m edges

Notes: Assuming no parallel edges or self-loops
Using Positions (for removeVertex and removeEdge)
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Depth-First Search

DB

A

C

E
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Outline and Reading
Depth-first search (§6.3.1)

Algorithm
Example
Properties
Analysis

Applications of DFS  (§6.5)
Path finding
Cycle finding
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Depth-First Search

Depth-first search (DFS) is 
general graph traversal technique
visits all the vertices and edges of G
with n vertices and m edges takes O(n + m ) time
a recursive traversal like Euler tour for binary trees

A DFS traversal of a graph G can be used to 
Determines whether G is connected
Computes the connected components of G
Computes a spanning forest of G
Find and report a path between two given vertices
Find a cycle in the graph
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Example

DB
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E

DB

A

C

E

DB
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C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← G.opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS_Sweep(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

Graphs version 1.3 29

DFS and Maze Traversal
The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze

We mark each 
intersection, corner 
and dead end (vertex) 
visited
We mark each corridor 
(edge ) traversed
We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Another Example of Depth 
First Search 
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DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← G.opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS_Sweep(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or BACK

DFS(G, v) called once for each vertex v
Inner loop in DFS(G, v) runs in O(deg(v)) time

Not counting time inside recursive calls
Assuming  adjacency list implementation

DFS runs in O(n + m) time
Recall that Σv deg(v) = 2m

Graphs version 1.3 33

Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in the 
connected component of v

Property 2
The discovery edges labeled 
by DFS(G, v) form a 
spanning tree of the 
connected component of v
called DFS tree, rooted at v

Property 3
DFS_Sweep(G) visits all 
vertices and edges of G

DB

A

C

E
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Connected Components  &
DFS Spanning Forest 

Use DFS(G, v) to label all 
edges and vertices in one 
connected component 
(property 1)
DFS_Sweep can label all 
connected components 
(property 3)
In a DFS_Sweep call, consider 
subgraph of 

all vertices
all DISCOVERY Edges

By DFS property 2 and 3, this 
subgraph is a Spanning 
Forest of G. 

Algorithm ccDFS_Sweep(G)
Input graph G
Output labeling of the vertices

and edges of G based on 
component number.

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

comp_num ← 1
for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

perform DFS(G, v) search,
labeling vertices and edges
found in the search with 
comp_num.

comp_num ← comp_num +1
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More Properties of DFS
Classifying Edges by DFS
Edge (v,w) type:

tree = in the DFS tree
back = w is ancestor of v 

in DFS tree
forward = w is descendent 

of v in DFS tree
cross = w is neither ancestor

nor descendant of v 
in DFS tree

(Assuming edge first explored from 
v to w).

Property 4: edges labeled BACK 
are in fact back edges

Property 5: back edges form a 
cycle

DB

A

C

E
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Path Finding
Specialize DFS to find a path 
between two given vertices v
and z
Call DFS(G, v, z) where

G is the graph
v is the start vertex
z is the destination vertex

Use a stack S to keep track 
of the path between the 
start vertex and the current 
vertex
As soon as destination 
vertex z is encountered, we 
return the path as the 
contents of the stack 

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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Cycle Finding
Specialize DFS to find a 
simple cycle
We use a stack S to 
keep track of the path 
between the start vertex 
and the current vertex
As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w

Algorithm cycleDFS(G, v)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
cycleDFS(G, w)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)
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abstract DFS Template
Use Template Method 
Design Pattern to 
implement DFS
Extend template to 
implement any algorithm 
that uses DFS. 
Extensions need to 
define the following:

startVisit()
traverseDiscovery()
traverseBack()
isDone()
finishVisit()
a method that returns 
results. 

Algorithm DFS(G, v)
setLabel(v, VISITED)
startVisit(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
traverseDiscovery(e)
if (not isDone())

DFS(G, w)
else

setLabel(e, BACK)
traverseBack(e)

finishVisit(v)


