

Outline and Reading

- Graphs (§6.1)
- Definitions
- Applications
- Terminology
- Properties
- ADT
- Data structures for graphs (§6.2)
- Edge list structure
- Adjacency list structure
- Adjacency matrix structure

Graph

- A graph is a pair (\boldsymbol{V}, E), where
- V is a set of nodes, called vertices
- E is a collection of edges (pairs of vertices)
- Vertices and edges are positions and store elements
- Graphs useful for representing real-world relationships:
- vertex = airport
- edge = flight route, storing mileage
- Abstract real-world problems into problems on graphs \qquad

Graphs version 1.3

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit
- Transportation networks
- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web

Databases

- Entity-relationship diagram

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample problems

What is cheapest way to fly from X to Y ?

- If airport X closes from bad weather, can I still fly between every other pair of cities?
Many classes have prereqs; in what order can
I take the classes for my major?
- How much traffic can flow between intersection X and intersection Y
How can I minimize the amount of wiring needed to connect some outlets together?

Edge Types

- Directed edge
- ordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- first vertex \boldsymbol{u} is the origin
- second vertex v is the destination
- e.g., a flight
- Undirected edge
- unordered pair of vertices (u, v)
- e.g., a flight route

Directed graph

- all the edges are directed
- e.g., route network
* Undirected graph
- all the edges are undirected
- e.g., flight network

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5

Parallel edges (typically not used)

- h and i are parallel edges

Self-loop (typically not used)

- j is a self-loop

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins and ends with some vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Reachable
- path exists
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path

- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a
path that is not simple
- Z is reachable from U

Graphs version 1.3

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- edges traversed only in one direction
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a,-\downarrow)$ is a simple cycle

- $\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}, \mathrm{J})$ is a cycle that is not simple
- $\mathrm{C}_{3}=(\mathrm{X}, \mathrm{h}, \mathrm{Z}, \mathrm{h}, \mathrm{X})$ is not a cycle

Subgraphs

A subgraph S of a graph G is a graph such that

- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Connectivity

A graph is connected if there is a path between every pair of vertices
A connected component of a graph G is a maximal connected subgraph of G

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree

- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree
Graphs version 1.3
13

Properties

Property 1
$\Sigma_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is counted twice
Property 2
In an undirected graph (with no self-loops or parallel edges)
$\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2$
Proof: at most one edge for every unique combination of 2 vertices

Notation

Example

- $n=4$
- $\boldsymbol{m}=6$
- $\operatorname{deg}(\boldsymbol{v})=3$ for all vertices

What is the bound on m for a directed graph?Graphs version 1.3

- Vertices and Edges accessor method:
- Object element()
- Update methods
- Vertex insertVertex(o)
- Edge insertEdge(v, w, o)
- void removeVertex(v)
- void removeEdge(e)

Accessor methods

- int numVertices()
- int numEdges()
- Vertex aVertex()
- Accessor methods
- Iterator vertices()
- Iterator edges()
- Iterator incidentEdges(v)
- Vertex[2] endVertices(e)
- Vertex opposite(v, e)
- boolean areAdjacent(v, w)
- Methods for directed edges
- Vertex origin(e)
- Vertex destination(e)
- boolean isDirected(e)
- Edge insertDirectedEdge($\mathrm{v}, \mathrm{w}, \mathrm{o})$

Edge List Structure

- Vertex object
- element
- Edge object
- element

- origin vertex object
- destination vertex object
- directed boolean flag
- Vertex sequence
- sequence of vertex objects
- Edge sequence
- sequence of edge objects

Graphs version 1.3

Graph ADT with Positions

- Recall

- Position = place where item is stored in a sequence
- In Goodrich's book:
- A Vertex is a Position
- An Edge is a Position
- Features of Positions
- Enables faster removal
- Implementation slightly more complex
- Unnecessary when removeVertex and removeEdge are not used
- Vertex object
- element
- reference to position in vertex sequence
- Edge object

- element
- origin vertex object
- destination vertex object
- reference to position in edge sequence
- Vertex sequence
- sequence of vertex objects
Edge sequence
- sequence of edge objects

Adjacency List Structure

- Edge list structure
- Each Vertex now stores incidence sequence
- sequence of references to edge objects of incident edges
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Adjacency List Structure (w/

Positions)

- Edge list structure (w/ Positions)
- Incidence sequence for each vertex
- sequence of references to edge objects of incident odges
- Augmented edge objects
- references to associated positions in positions in incidence
sequences of end vertices

Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
- Integer key (index) associated with vertex
- 2D-array adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Asymptotic Performance

\boldsymbol{n} vertices, \boldsymbol{m} edges	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$	$\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
Iterating through incidentEdges (\boldsymbol{v})	$\boldsymbol{O}(\boldsymbol{m})$	$\boldsymbol{O}(\operatorname{deg}(\boldsymbol{v}))$	$\boldsymbol{O}(\boldsymbol{n})$
areAdjacent (v, \boldsymbol{w})	$\boldsymbol{O}(\boldsymbol{m})$	$\boldsymbol{O}(\min (\operatorname{deg}(\boldsymbol{v})$, $\operatorname{deg}(\boldsymbol{w})))$	$\boldsymbol{O}(1)$
insertVertex (\boldsymbol{o})	$\boldsymbol{O}(1)$	$\boldsymbol{O}(1)$	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	$\boldsymbol{O}(1)$	$\boldsymbol{O}(1)$	$\boldsymbol{O}(1)$
removeVertex (\boldsymbol{v})	$\boldsymbol{O}(\boldsymbol{m})$	$\boldsymbol{O}(\operatorname{deg}(\boldsymbol{v}))$	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
removeEdge (\boldsymbol{e})	$\boldsymbol{O}(1)$	$\boldsymbol{O}(1)$	$\boldsymbol{O}(1)$

Notes: Assuming no parallel edges or self-loops
Using Positions (for removeVertex and removeEdge) Graphs version 1.3

Outline and Reading

Depth-first search (§6.3.1)

- Algorithm
- Example
- Properties
- Analysis
- Applications of DFS (§6.5)
- Path finding
- Cycle finding

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Depth-First Search

Depth-first search (DFS) is

- general graph traversal technique
- visits all the vertices and edges of G
- with \boldsymbol{n} vertices and \boldsymbol{m} edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- a recursive traversal like Euler tour for binary trees
- A DFS traversal of a graph G can be used to
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- Find and report a path between two given vertices
- Find a cycle in the graph

Graphs version 1.3
25
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

Graphs version 1.3

Example (cont.)

DFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm DFS_Sweep (G) Input graph G
Output labeling of the edges of G as discovery edges and back edges
for all $u \in G$.vertices() setLabel(u, UNEXPLORED)
for all $e \in G . e d g e s()$
setLabel(e, UNEXPLORED)
for all $v \in G$.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED
$\operatorname{DFS}(G, v)$ $D F S(G, v)$

Algorithm $\operatorname{DFS}(G, v)$
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the edges of G in the connected component of v as discovery edges and back edges setLabel(v, VISITED)
for all $e \in$ G.incidentEdges(v) if getLabel $(e)=$ UNEXPLORED $w \leftarrow$ G.opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED setLabel(e, DISCOVERY) $\operatorname{DFS}(G, w)$
else setLabel $(e, B A C K)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope
 (recursion stack)
\qquad

Another Example of Depth First Search

\qquad
\qquad
\qquad
\qquad
\qquad

DFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges
Algorithm DFS_Sweep (G) Input graph G
Output labeling of the edges of G as discovery edges and back edges
for all $u \in G$.vertices() setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in G$.vertices()
if $\operatorname{getLabel}(v)=U N E X P L O R E D$ $D F S(G, v)$

Algorithm $\operatorname{DFS}(G, v)$
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the edges of G in the connected component of \boldsymbol{v} as discovery edges and back edges setLabel(v, VISITED)
for all $e \in$ G.incidentEdges(v) if $\operatorname{getLabel}(e)=$ UNEXPLORED $w \leftarrow G$.opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED setLabel(e, DISCOVERY) $\operatorname{DFS}(G, w)$
else setLabel(e, BACK)

Analysis of DFS

Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time \qquad

- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
\qquad
Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or BACK
- $\operatorname{DFS}(G, v)$ called once for each vertex v
- Inner loop in $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ runs in $\mathrm{O}(\operatorname{deg}(\boldsymbol{v})$) time \qquad
- Not counting time inside recursive calls
- Assuming adjacency list implementation
- DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Recall that $\sum_{v} \operatorname{deg}(v)=2 \boldsymbol{c}=\boldsymbol{G}_{\text {Grophs version } 1.3}$

Properties of DFS

Property 1

$\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ visits all the vertices and edges in the connected component of v
Property 2
The discovery edges labeled by $\operatorname{DFS}(G, v)$ form a spanning tree of the connected component of v called DFS tree, rooted at v
Property 3
DFS_Sweep (G) visits all vertices and edges of G

Connected Components \&

 DFS Spanning ForestAlgorithm ccDFS_Sweep (G)

Input graph G
Output labeling of the vertices and edges of \boldsymbol{G} based on component number for all $u \in$ G.vertices() setLabel(u, UNEXPLORED)
for all $e \in$ G.edges() setLabel(e, UNEXPLORED) comp_num $\leftarrow 1$
for all $v \in$ G.vertices()
if $\operatorname{getLabel}(v)=U N E X P L O R E D$ perform $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ search, labeling vertices and edges found in the search with comp_num. comp_num \leftarrow comp_num +1

Use $\operatorname{DFS}(G, v)$ to label all edges and vertices in one connected component (property 1)
DFS Sweep can label all connected components (property 3)

- In a DFS_Sweep call, consider subgraph of
- all vertices
- all DISCOVERY Edges

By DFS property 2 and 3, this subgraph is a Spanning Forest of G .
hs version 1.3

More Properties of DFS

Classifying Edges by DFS
Edge (v, w) type:
tree $=$ in the DFS tree
back $=w$ is ancestor of v in DFS tree
forward $=\mathrm{w}$ is descendent of v in DFS tree
cross $=\mathrm{w}$ is neither ancestor nor descendant of v in DFS tree
(Assuming edge first explored from v to w).

Property 4: edges labeled BACK are in fact back edges
Property 5: back edges form a cycle

Path Finding

- Specialize DFS to find a path between two given vertices and z
- Call $\operatorname{DFS}(G, v, z)$ where
- G is the graph
- v is the start vertex
- z is the destination vertex
- Use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

Algorithm pathDFS(G, $v, z)$
$\operatorname{setLabel}(v$, VISITED $)$
S.push(v)
if $v=z$
return S.elements()
for all $e \in$ G.incidentEdges(v) if $\operatorname{getLabel}(e)=U N E X P L O R E D$ $w \leftarrow$ opposite (v, e) if $\operatorname{getLabel}(w)=U N E X P L O R E D$ setLabel(e, DISCOVERY) S.push(e) pathDFS(G, w, z) S.pop(e)
else
setLabel(e, BACK)

Cycle Finding

- Specialize DFS to find a simple cycle
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex \boldsymbol{w}

Algorithm cycleDFS(G, v)
setLabel(v, VISITED)
S.push(v)
for all $e \in$ G.incidentEdges(v) if $\operatorname{getLabel}(e)=$ UNEXPLORED
$w \leftarrow$ opposite((ν, e)
S.push(e)
if getLabel $(w)=$ UNEXPLORED setLabel(e, DISCOVERY)
cycleDFS($G, w)$
S.pop(e)
else
$T \leftarrow$ new empty stack
repeat
$o \leftarrow S . p o p()$ T.push(o)
until $o=w$
return T.elements()
S.pop(ν)

Graphs version 1.3
37
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

abstract DFS Template

Use Template Method Design Pattern to implement DFS

- Extend template to implement any algorithm that uses DFS.
- Extensions need to define the following:
- startVisit()
- traverseDiscovery0
- traverseBack0
- isDone)
- finishVisit()
- a method that returns results.

Algorithm $\operatorname{DFS}(G, v)$
setLabel(v, VISITED)
start Visit (v)
for all $e \in$ G.incidentEdges(v)
if $\operatorname{getLabel}(e)=U N E X P L O R E D$
$w \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=U N E X P L O R E D$
setLabel (e, DISCOVERY)
traverseDiscovery(e)
if (not isDoneO)
$\operatorname{DFS}(G, w)$
else
setLabel (e, BACK)
traverseBack(e)
finish Visit(v)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

