The Greedy Method

The Greedy Method v 1.1 1

Outline and Reading

The Greedy Method Technique (§5.1)

Fractional Knapsack Problem (§5.1.1)

Task Scheduling (§5.1.2)

Minimum Spanning Trees (§7.3) [future lecture]

The Greedy Method v 1.1 2

The Greedy Method g
‘Technique é’@ﬁg

4 The greedy method is a general algorithm
design paradigm, built on the following
elements:

= configurations: different choices, collections, or
values to find

= objective function: a score assigned to
configurations, which we want to either maximize or
minimize

4 It works best when applied to problems with the
greedy-choice property:

= a globally-optimal solution can always be found by a
series of local improvements from a starting
configuration.

The Greedy Method v 1.1 3

‘Making Change

4 Problem: A dollar amount to reach and a collection of
coin amounts to use to get there.

@ Configuration: A dollar amount yet to return to a
customer plus the coins already returned

4 Objective function: Minimize number of coins returned.

@ Greedy solution: Always return the largest coin you can

% Example 1: Coins are valued $.32, $.08, $.01

= Has the greedy-choice property, since no amount over $.32 can
be made with a minimum number of coins by omitting a $.32
coin (similarly for amounts over $.08, but under $.32).

4 Example 2: Coins are valued $.30, $.20, $.05, $.01

= Does not have greedy-choice property, since $.40 is best made
with two $.20's, but the greedy solution will pick three coins
(which ones?)

The Greedy Method v 1.1 4

The Fractional Knapsack @j;
Problem =

(IS
Given: A set S of n items, with each item i having

= b, - a positive benefit

= W, - a positive weight
@ Goal: Choose items with maximum total benefit but with

weight at most W.

If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
= In this case, we let x; denote the amount we take of item i

—
D

(<

= Objective: maximize Zbi(xi /w;)
ieS
= Constraint: zxi <w

ie§
The Greedy Method v 1.1 5

'Example

4 Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W.

“knapsack”

= Solution:

. e1mlof5

Ttems: @ i E E «2mlof3
) e 6 mlof 4
Weight: 4ml 8ml 2ml 6ml 1ml e1mlof2

Benefit: $12 $32 $40 $30 $50

Value: 3 4 20 5 50
($ per ml)

10 ml

The Greedy Method v 1.1 6

The Fractional Knapsack
“Algorithm

@ Greedy choice: Keep taking

item Wlth h|ghe5t Val_ue Algorithm fractionalKnapsack(S, W)
(beneflt to Welght ratlo) Input: set § of items w/ benefit b,
= Since Zb,(x, /w)= z(b,/w,)X, and weight w;; max. weight W
= ieS Output: amount x, of each item /
= Run time: O(n log n). Why? to maximize benefit w/ weight
4 Correctness: Suppose there atmost
is a better solution for each item i in S
a there is an item i with higher X0)
value than a chosen item j, Vi bi/w; {value}
but x,<w, Xj>0 and Vi<, w0 {total weight}
= If we substitute some i with j, While <
we get a better solution remove item i w/ highest v,
= How much of i: min{w-x, x} X < min{w;, ’IV' Wz}
. 4 p + . /- w
» Thus, there is no better wew Fminiw, W-w

solution than the greedy one
The Greedy Method v 1.1 7

The Fractional Knapsack 7
Algorithm- detailed soln &

Algorithm fractionalKnapsack(S, W) é
Input: set S of n items w/ benefit b, and weight w;;
max. total weight W
Output: amount x; of each item 7 to maximize benefit w/ weight
at most W
PO « empty maximizing heap-based priority queue
for each item i in S

x; <0

v« b, /w; {value}

PQ.insertltem(v,i) {insert item into PQ, sorted by value}
w0 {total weight so far}
while w <1

k < PQ.removeMax() {remove item i w/ highest v}
addamt < min{w,, W-w} {amount of item k to take}
X; < addamt

w< w + addamt

The Greedy Method v 1.1 8

‘Task Scheduling

Given: a set T of n tasks, each having:
= Astarttime, s;
= Afinish time, f; (where s; < f)

4 Goal: Perform all the tasks using @ minimum number of

machines.
Machine 3 [T T T N
Machine 2 L 1
Machine | L T]

The Greedy Method v 1.1 9

Task Scheduling
“Algorithm

Greedy choice: consider tasks
by their start time and use as

few machines as possible with [y (i m Zaskschedute(T)
this order. .
) Input: set 7 of tasks w/ start time s,
Correctness: and finish time /;
= When k" machine is created Output: non-conflicting schedule
to do task i (at time s;), all with minimum number of machines
k-1 other machines are busy me«0 {no. of machines}
with another task at time s;; while 7 is not empty
] Ther(_-_‘ are k tasks that remove task i w/ smallest s;
C_OﬂﬂlCt with each other at if there’s a machine j for i then
time s, schedule i on machine j
= At least k machines else
necessary. m«—m+1
% Is it correct w/o ordering by schedule i on machine m
start-time?
The Greedy Method v 1.1 10

Example

% Given: a set T of n tasks, each having:
= Astarttime, s;
= Afinish time, f; (where s; <)
= [1,4],[1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
% Goal: Perform all tasks on min. number of machines

Machine 3 C 1 C 1
Machine 2
Machine |

The Greedy Method v 1.1 11

Task Scheduling
“Algorithm

Greedy choice: consider tasks
by their start time and use as

Algorithm taskSchedu

Input: set 7 of tasks w/ start time s,

few machines as possible with and finish time /;
this order. Output: non-conflicting schedule
Make following operations fast: with minimum number of machines
schedule = list of (task, machine num)

= removing task with smallest
start time

= checking scheduling conflicts
Both steps above can be done in
O(log n) time, where n is
number of tasks. (How?) schedule i on machine j
4 Thus, O(n log n). else

me«m+l1

pairs
m« 0 {no. of machines}
while 7 is not empty
remove task i w/ smallest s;
if there’s a machine j for i then

schedule i on machine m
return schedule;

The Greedy Method v 1.1 12

