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The Greedy Method
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Outline and Reading

The Greedy Method Technique (§5.1)
Fractional Knapsack Problem (§5.1.1)
Task Scheduling (§5.1.2)
Minimum Spanning Trees (§7.3) [future lecture]
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The Greedy Method 
Technique

The greedy method is a general algorithm 
design paradigm, built on the following 
elements:

configurations: different choices, collections, or 
values to find
objective function: a score assigned to 
configurations, which we want to either maximize or 
minimize

It works best when applied to problems with the 
greedy-choice property: 

a globally-optimal solution can always be found by a 
series of local improvements from a starting 
configuration.
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Making Change
Problem: A dollar amount to reach and a collection of 
coin amounts to use to get there.
Configuration: A dollar amount yet to return to a 
customer plus the coins already returned
Objective function: Minimize number of coins returned.
Greedy solution: Always return the largest coin you can
Example 1: Coins are valued $.32, $.08, $.01

Has the greedy-choice property, since no amount over $.32 can 
be made with a minimum number of coins by omitting a $.32 
coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01
Does not have greedy-choice property, since $.40 is best made 
with two $.20’s, but the greedy solution will pick three coins 
(which ones?)
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The Fractional Knapsack 
Problem

Given: A set S of n items, with each item i having
bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are allowed to take fractional amounts, then this is 
the fractional knapsack problem.

In this case, we let xi denote the amount we take of item i

Objective: maximize

Constraint:
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Example
Given: A set S of n items, with each item i having

bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”
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The Fractional Knapsack 
Algorithm

Greedy choice: Keep taking 
item with highest value
(benefit to weight ratio)

Since 
Run time: O(n log n). Why?

Correctness: Suppose there 
is a better solution

there is an item i with higher 
value than a chosen item j, 
but xi<wi, xj>0 and vi<vj

If we substitute some i with j, 
we get a better solution
How much of i: min{wi-xi, xj}
Thus, there is no better 
solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i 

to maximize benefit w/ weight 
at most W

for each item i in S
xi ← 0
vi ← bi  / wi {value}

w ← 0 {total weight}
while w < W 

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}
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The Fractional Knapsack 
Algorithm- detailed soln

Algorithm fractionalKnapsack(S, W)
Input: set S of n items w/ benefit bi and weight wi; 

max. total weight W
Output: amount xi of each item i to maximize benefit w/ weight 

at most W
PQ ← empty maximizing heap-based priority queue
for each item i in S

xi ← 0
vi ← bi  / wi {value}
PQ.insertItem(vi,i) {insert item into PQ, sorted by value}

w ← 0 {total weight so far}
while w < W 

k ← PQ.removeMax() {remove item i w/ highest vi}
addamt ← min{wk , W - w} {amount of item k to take}
xi ← addamt
w ← w + addamt
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Task Scheduling
Given: a set T of n tasks, each having:

A start time, si

A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of 
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2
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Task Scheduling 
Algorithm

Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.
Correctness: 

When kth machine is created 
to do task i (at time si), all 
k-1 other machines are busy 
with another task at time si;
There are k tasks that 
conflict with each other at 
time si

At least k machines 
necessary.

Is it correct w/o ordering by 
start-time?

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule 
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m
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Example
Given: a set T of n tasks, each having:

A start time, si

A finish time, fi (where si < fi)
[1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2
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Task Scheduling 
Algorithm

Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.
Make following operations fast:

removing task with smallest 
start time 
checking scheduling conflicts 

Both steps above can be done in 
O(log n) time, where n is 
number of tasks.  (How?)
Thus, O(n log n).

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule 
with minimum number of machines
schedule = list of (task, machine num) 

pairs
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

return schedule;


