
Merge Sort 2/13/2003 6:55 PM

1

The Greedy Method v 1.1 1

The Greedy Method

The Greedy Method v 1.1 2

Outline and Reading

The Greedy Method Technique (§5.1)
Fractional Knapsack Problem (§5.1.1)
Task Scheduling (§5.1.2)
Minimum Spanning Trees (§7.3) [future lecture]

The Greedy Method v 1.1 3

The Greedy Method
Technique

The greedy method is a general algorithm
design paradigm, built on the following
elements:

configurations: different choices, collections, or
values to find
objective function: a score assigned to
configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:

a globally-optimal solution can always be found by a
series of local improvements from a starting
configuration.

Merge Sort 2/13/2003 6:55 PM

2

The Greedy Method v 1.1 4

Making Change
Problem: A dollar amount to reach and a collection of
coin amounts to use to get there.
Configuration: A dollar amount yet to return to a
customer plus the coins already returned
Objective function: Minimize number of coins returned.
Greedy solution: Always return the largest coin you can
Example 1: Coins are valued $.32, $.08, $.01

Has the greedy-choice property, since no amount over $.32 can
be made with a minimum number of coins by omitting a $.32
coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01
Does not have greedy-choice property, since $.40 is best made
with two $.20’s, but the greedy solution will pick three coins
(which ones?)

The Greedy Method v 1.1 5

The Fractional Knapsack
Problem

Given: A set S of n items, with each item i having
bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.

In this case, we let xi denote the amount we take of item i

Objective: maximize

Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx

The Greedy Method v 1.1 6

Example
Given: A set S of n items, with each item i having

bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

Merge Sort 2/13/2003 6:55 PM

3

The Greedy Method v 1.1 7

The Fractional Knapsack
Algorithm

Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)

Since
Run time: O(n log n). Why?

Correctness: Suppose there
is a better solution

there is an item i with higher
value than a chosen item j,
but xi<wi, xj>0 and vi<vj

If we substitute some i with j,
we get a better solution
How much of i: min{wi-xi, xj}
Thus, there is no better
solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit w/ weight
at most W

for each item i in S
xi ← 0
vi ← bi / wi {value}

w ← 0 {total weight}
while w < W

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}

∑∑
∈∈

=
Si

iii
Si

iii xwbwxb)/()/(

The Greedy Method v 1.1 8

The Fractional Knapsack
Algorithm- detailed soln

Algorithm fractionalKnapsack(S, W)
Input: set S of n items w/ benefit bi and weight wi;

max. total weight W
Output: amount xi of each item i to maximize benefit w/ weight

at most W
PQ ← empty maximizing heap-based priority queue
for each item i in S

xi ← 0
vi ← bi / wi {value}
PQ.insertItem(vi,i) {insert item into PQ, sorted by value}

w ← 0 {total weight so far}
while w < W

k ← PQ.removeMax() {remove item i w/ highest vi}
addamt ← min{wk , W - w} {amount of item k to take}
xi ← addamt
w ← w + addamt

The Greedy Method v 1.1 9

Task Scheduling
Given: a set T of n tasks, each having:

A start time, si

A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2

Merge Sort 2/13/2003 6:55 PM

4

The Greedy Method v 1.1 10

Task Scheduling
Algorithm

Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.
Correctness:

When kth machine is created
to do task i (at time si), all
k-1 other machines are busy
with another task at time si;
There are k tasks that
conflict with each other at
time si

At least k machines
necessary.

Is it correct w/o ordering by
start-time?

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

The Greedy Method v 1.1 11

Example
Given: a set T of n tasks, each having:

A start time, si

A finish time, fi (where si < fi)
[1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2

The Greedy Method v 1.1 12

Task Scheduling
Algorithm

Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.
Make following operations fast:

removing task with smallest
start time
checking scheduling conflicts

Both steps above can be done in
O(log n) time, where n is
number of tasks. (How?)
Thus, O(n log n).

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule
with minimum number of machines
schedule = list of (task, machine num)

pairs
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

return schedule;

