## Shortest Paths



## Outline and Reading

Weighted graphs (§7.1)

- Shortest path problem
- Shortest path properties

Dijkstra's algorithm (§7.1.1)

- Algorithm
- Edge relaxation
- The Bellman-Ford algorithm (§7.1.2) $\qquad$
Shortest paths in dags (§7.1.3)
- All-pairs shortest paths (§7.2.1) $\qquad$


## Weighted Graphs



- In a weighted graph, each edge has a weight (an associated numerical value)
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports



## Shortest Path Problem



- Given a weighted graph and two vertices $u$ and $v$, we want to find a path of minimum total weight of a path between $u$ and $v$. - Length (or weight) of a path is the sum of the weights of its edges.

Distance of $u$ from $v$ is the length of a shortest path from $u$ to $v$.

- Example: Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations



## Shortest Path Properties



Property 1 :
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence


## Single-Source Shortest Paths Problem

- Given a weighted graph and one source vertex $s$, find the shortest path tree $\boldsymbol{T}$.
- $T$ is a tree rooted at $s$ representing shortest path from $s$ to every other vertex $v$ in the graph.
- (The simple path from $s$ to $v$ in tree $T$ is a shortest path from $s$ to $v$ )



## Dijkstra's Algorithm

- Solves single-source shortest path problem
- Also computes distances from source vertex $s$ to other vertices v
- Is a greedy algorithm
- Assumptions:
- the graph is connected
- the edge weights are nonnegative
- (the edges are undirected)
- We grow a "cloud" of vertices, beginning with $s$ and eventually covering all the vertices
- "cloud" of vertices contains shortest path tree
- Store $d(v)$ at each vertex $v ; d(v)$ represents the distance of $v$ from $s$ in the "cloud + adjacent vertices" subgraph
- Also track edge used to get to $v$ - At each step
- Add outside vertex $u$ with the smallest distance $d(u)$ into cloud
- Update distance labels (= several edge relaxation steps)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Example



## Example (cont.)


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Edge Relaxation

- Consider an edge $e=(u, z)$ such that
- $u$ is the vertex most recently added to the cloud
- $z$ is not in the cloud
- The relaxation of edge $e$ updates distance $d(z)$ as follows:
$d(z) \leftarrow \min \{d(z), d(u)+$ weight $(e)\}$



## Why Dijkstra's Algorithm Works

Dijkstra's algorithm is based on the greedy
 method. It adds vertices by increasing distance.

- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!

- Thus, so long as $\mathrm{d}(\mathrm{F}) \geq \mathrm{d}(\mathrm{D}), \mathrm{F}^{\prime} \mathrm{s}$ distance cannot be wrong. That is, there is no wrong vertex.
$\qquad$


## Dijkstra's Algorithm



- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert $(k, e)$ returns a locator
- replaceKey(l,k) changes the key of an item
- We store three labels with each vertex:
- Distance (d(v) label)
- locator in priority queue

Algorithm Dijkstra (G, s)
$Q \leftarrow$ new heap-based priority queue
for all $v \in G$.vertices()
if $v=s$ then setDistance $(v, 0)$
$\begin{array}{ll}\text { if } v=s \text { then } \begin{array}{l}\text { SetDistance }(v, 0) \\ \text { else }\end{array} & \text { setDistance }(v, \infty)\end{array}$
$l \leftarrow Q$.insert(getDistance $(v), v)$
setLocator ( $(,, l)$
setParentEdge $(\mathrm{v}, \varnothing)$
while $\neg$ Q.isEmpty ()
$u \leftarrow Q$.removeMin()
for all $e \in$ GincidentEdges( $u$ )
\{ relax edge $e$ \}
$z \leftarrow$ G.opposite $(u, e)$
$r \leftarrow$ getDistance $(u)+$ weight $(e)$
if $r<$ getDistance $(z)$
setDistance $(z, r)$
Q.replaceKey(getLocator(z),r)
setParentEdge(, , $e$ )

## Analysis 1



- Graph operations using adjacency list structure: $\boldsymbol{O}(\boldsymbol{m})$ time - incidentEdges iterates through incident edges once for each vertex:
- Label operations: $\boldsymbol{O}(\boldsymbol{m})$ time
- We set/get the labels of vertex $z \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations (heap-based): $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n}+\boldsymbol{m} \log \boldsymbol{n})$
- Insert and remove happens once for each vertex; at $\operatorname{cost} \boldsymbol{O}(\log \boldsymbol{n})$ time each.
- key of any vertex $w$ modified up to $\operatorname{deg}(\boldsymbol{w})$ times, at $\operatorname{cost} \boldsymbol{O}(\log \boldsymbol{n})$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ time provided
- the graph is connected
- graph represented by the adjacency list structure
- we use heap-based PQ
$\qquad$


## Analysis 2



- Graph operations using adjacency list structure: $\boldsymbol{O}(\boldsymbol{m})$ time
- incidentEdges iterates through incident edges once for each vertex:
- Label operations: $\boldsymbol{O}(\boldsymbol{m})$ time
- We set/get the labels of vertex $z \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}_{( }(1)$ time
- Priority queue operations (unsorted sequence): $O\left(n^{2}+m\right)$
- Insert and remove happens once for each vertex; at cost $\boldsymbol{O}(\boldsymbol{n})$ time each
- key of any vertex $w$ modified up to $\operatorname{deg}(\boldsymbol{w})$ times, at cost $\boldsymbol{O}(1)$ each time
- Dijkstra's algorithm runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time provided
- the graph is connected
- graph represented by the adjacency list structure
- we use unsorted-sequence based PQ
$\qquad$


## Why It Doesn't Work for Negative-Weight Edges

Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.

- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.


C's true distance is 1 , but it is already in the cloud with $d(C)=5$ !

## Bellman-Ford Algorithm

Works even with negativeweight edges (on directed graphs)

- Iteration i finds all shortest paths that use i edges.
- Running time: $\mathrm{O}(\mathrm{nm})$.
- Can be extended to detect a negative-weight cycle if it exists
- How?

Algorithm BellmanFord(G, $s$ )
for all $v \in G$.vertices()
if $v=s$
setDistance $(v, 0)$ else
setDistance $(v, \infty)$
for $i \leftarrow 1$ to $n-1$ do
for each $e \in$ G.edges()
\{relax edge $\boldsymbol{e}$ \}
$u \leftarrow G$.origin(e)
$u \leftarrow$ G.origin $(e)$
$z \leftarrow$ G.opposite $(u, e)$
$r \leftarrow$ getDistance $(u)+$ weight $(e)$ if $r<$ getDistance $(z)$ setDistance $(z, r)$

## Bellman-Ford Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## DAG-based Algorithm



```
Algorithm DagDistances(G, s
    for all v\inG.vertices()
        if}v=
        setDistance(v,0)
            else
            setDistance(v,\infty)
    Perform a topological sort of the vertices
    for }u\leftarrow1\mathrm{ to }n\mathrm{ do {in topological order 
        for each }e\inG.outEdges(u
            {relax edge e}
            \leftarrowG.opposite(u,e)
            r}\leftarrow\operatorname{getDistance(u)+weight(e)
            if r<getDistance(z)
                setDistance(z,r)
```

$\qquad$

Only for DAGs

- Works even with negative-weight edges
- Uses topological order
- Doesn't use any fancy data structures
- Is much faster than Dijkstra's algorithm
- Running time: $O(n+m)$.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## DAG Example



Shortest Paths v1.0

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G .
- number vertices in $\mathrm{G}: 1,2, \ldots, \mathrm{n}$
- Store as a matrix $D$, so $D[i, j]$ represents cost of shortest path from i to j .
- Distance may be infinite, meaning no path.
- Possible solutions:
- Use Dijkstra's algorithm n times, one for each vertex
- Only works if no negative edges
- takes $O(n m \log n)$ time.
- Use Bellman-Ford $n$ times, one for each vertex
- takes $O\left(n^{2} m\right)$ time.
- $O\left(n^{3}\right)$ time with Floyd-Warshall


## Floyd-Warshall's Algorithm

## Extension of reachability algorithm

- Based on similar recurrence:
- Let $D_{k}[i, j]$ denote cost of shortest path from $i$ to $j$ whose intermediate vertices are a subset of $\{1,2, \ldots, k\}$.
- Then $D_{k}[i, j]=$ $\min \left(D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right)$.
What is $D_{0}[i, j]$ ? What is $D_{n}[i, j]$ ?


## Floyd-Warshall All-Pairs shortest paths

- Computing $D_{k}$ from $D_{k-1}$ :
- For each pair of vertices ( $\mathrm{i}, \mathrm{j}$ ) in $D_{k-1}$ set $D_{k}[i, j]$
 to minimum of
- $D_{k-1}[i, j]$ (previous shortest path)
- $D_{k-1}[i, k]+D_{k-1}[k, j]$ (new possible shortest path going through k Uses only vertices numbered $1, \ldots, \mathrm{k}$


Uses only vertices numbered $1, \ldots, k-1$

> Uses only vertices numbered $1, \ldots, k-1$

## All-Pairs Shortest Paths using

 Floyd-WarshallNon-recursive
dynamic
programming version
of Floyd-Warshall
O( $\left.n^{3}\right)$ time

Algorithm $\operatorname{AllPair}(\boldsymbol{G})$ \{assumes vertices $1, \ldots, \boldsymbol{n}\}$
for all vertex pairs $(i, j)$
if $i=j$
$\qquad$
$D_{0}[i, i] \leftarrow 0$
else if $(i, j)$ is an edge in $G$
$D_{0}[i, j] \leftarrow$ weight of edge $(i, j)$
else
$D_{0}[i, j] \leftarrow+\infty$
for $k \leftarrow 1$ to $n$ do
for $i \leftarrow 1$ to $n$ do
for $j \leftarrow 1$ to $n$ do
$D_{k}[i, j] \leftarrow \min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$
return $D_{n}$ $\qquad$

$\qquad$
$\qquad$

