Computing and Software Systems 343, Spring 2004
Mathematical Principles of Computing II

Assignment 1. Version 1.2.

Due Monday, April 5. Each problem is worth 5 points unless otherwise specified.

1. Design a method that accepts an array A containing positive integers and determines whether the array can be partitioned into 3 contiguous subsequences such that each subsequence has the same total sum. If such a division is possible, report the length of each subdivision. For example, if A = {2, 12, 13, 5, 7, 25, 1, 1, 2, 28}, then we can divide A into contiguous subsequences {2, 12, 13, 5}, {7,25}, and {1,1,2,28}, each of which totals 32. Thus, the answer would report that the first subsequence has length 4, the second has length 2, and the third has length 4. On the other hand, if A ={3, 1, 2, 3, 2, 4}, then there is no way of splitting A into contiguous subsequences with the same total. The partition of the array into three parts subdivides the array so that each item of the array is in exactly one subsequence (and every array element is used in some subsequence). This is the typical definition for partition. Write your algorithm out in detailed pseudocode.

2. Give the running time of your method by counting primitive operations using worst-case analysis. Show how you got your result.

3. There should be at least one loop in your method. Pick the first outermost loop, and write a loop invariant for that loop iteration. You should be able to use your loop invariant to help prove the correctness of your algorithm, although a proof is not necessary.

4. Let f(n) =
[image: image1.wmf]å

=

n

i

i

1

3

. (So f(1) = 1, f(2) = 1+ 23, f(3) = 1 + 23 + 33, … Prove that f(n) is O(n4). [Hint: One way is to first use induction to show that f(n) < 100n4 for all n > 1. Then show the result follows from the definition of O(n4)].

5. Write a recurrence equation to represent the worst-case number of primitive operations used for recArrayFind, listed below. Then solve the recurrence equation, getting a closed form solution. (Note: an induction proof is not necessary).

Algorithm recArrayFind(x, A, n):

Input: An element x, an array A with n (1 elements.

Output: The index i such that x= A[i] or –1 if no element of A is equal to x.

if (A[n-1] = x) then

return n-1

else if n = 1

return -1

else

return recArrayFind(x,A,n-1)

6. Programming (worth 10 points): Write a method that accepts an array of numbers and determines whether there are duplicates among the numbers. If so, print out the first pair of equal entries and their location in the array, otherwise print a message that the array contains unique numbers. To test your method, you should write program that reads in a sequence of numbers from a text file into an array and then calls your method check for duplicates, and then prints out indices of the first duplicate or the “no duplicates found” message. Most of the java code for text input/output is already provided on the website. You should call your program HasDuplicates.java. Turn in your program via Blackboard’s digital drop box.

7. [Extra Credit]: Answer the following questions, and turn in the extra programming assignment: What is the fastest algorithm you can come up with for solving #1? How fast is it? Does your fast algorithm still work when the input could consist of negative numbers? Implement your fast solution in Java, and turn it in electronically. Call your program FindPartition.java.

_1142062605.unknown

