Computing and Software Systems 343, Spring 2004
Mathematical Principles of Computing II

Assignment 2. Version 1.0.

Due Monday, April 12, 4:15 PM. Each problem worth 5 points, unless otherwise noted.

1. C-1.26 from the book. Hint: Exactly how many intersection points are there? (Figuring this out may help you solve the problem).

2. R-2.9 from the book.

3. R-2.14 from the book

4. (20 pts) C-2.6 from the book. Please write out your method in pseudocode. The pseudocode is worth 10 pts, and the question answers are worth 10 pts.

5. (10 pts) Programming: Implement a priority queue that stores the items in an unsorted array. To simplify things, you may assume the key is of type double, and use an array of size an arbitrarily large size N, such as 1000. (Assume that the queue will never contain more than N items). You do not have to worry about throwing exceptions. Your class should implement the following two methods (as described in the book):

public void insertItem(double key, object o)

public object removeMin()

If removeMin is applied to an empty priority queue, return null.

One way to test your priority queue is to use PQ-Sort with your priority queue to sort an array of doubles. PQSort.java is provided to you on the website. PQSort's main method reads a double array a text file, sorts them using PQ-Sort from the book, and then prints out the sorted result. Note that PQSort.java uses the input/output routines in inputoutput.zip from homework 1. You should call your priority queue Mypriorityqueue.java so that PQSort.java will work without modification. Turn in all the java code that you wrote via Blackboard’s digital drop box.

6. In the unsorted array implementation of a priority queue, what is the runtime cost of one removeMin() call? Give your answer in big-Oh notation in terms of n (the current number of items in the priority queue) and N (the maximum capacity of your priority queue). Briefly explain the reasoning behind your answer.

7. Extra Credit: (5 extra points) Extend your priority queue implementation as follows:

1) Make it work with keys that are arbitrary objects

2) Use a Comparator to compare keys. (You now have to initialize the priority queue with a Comparator object)

Test your implementation by creating a version of PQ-Sort that sorts ordered pairs of integers (x,y) in lexicographic order. This means that (x1,y1) < (x2,y2) when [(x1 < x2) or (x1 = x2 and y1 < y2)]. Use Blackboard to turn in both your priority queue implementation and your test program for sorting ordered pairs.

