Computing and Software Systems 343, Spring 2004
Mathematical Principles of Computing II

Assignment 3. Version 1.0.

Due Monday, April 19, 4:15 PM. Each problem is worth 5 points, unless otherwise specified.

1. (9 points) Below is code for solving the longest contiguous subsequence summing to 25 problem. To help explain the problem, if A = {2, 12, 13, 5, 7, 25, 1, 1, 2}, then the answer is the subsequence {13, 5, 7}, which is of length 3 and sums to 25. All other contiguous subsequences that add up to 25 are shorter (such as {12,13}).

Algorithm FindSubSeqSum25(A, n)

Input: Array A of n positive integers.

Output: (sublength, substart), where sublength is the length of the longest

contiguous subsequence in A that sums up to 25, and substart is the

index of the start of the subsequence in A. If sublength is 0, then no

subsequence adding up to 25 was found, and the return value for substart

will also be 0.

1.
sublength (0

2. substart (0

3. sum (0

4.
for i (0 to n-1 do

5.

sum (A[i]

6.

length (1

7.

j (i + 1

8.

while sum < 25 and j < n do

9.

sum (sum + A[j]

10.

length (length + 1

11.

j (j + 1

12.

if sum = 25 and sublength < length

13.

substart (i

14.

sublength (length

15.

else if sum < 25

16.

break out of for loop

17.
return (sublength, substart)

Three different people have each tried to write a loop invariant for the outermost loop of the (possibly corrected) code from the problem above. For each statement, state 1) whether it is a correct loop invariant (whether it is always true), 2) whether it is a USEFUL loop invariant (whether it could be used in a correctness proof), and 3) provide an explanation of your reasoning (for parts 1 & 2). Think about whether each suggested loop invariant is complete enough to be able to show correctness.

In each invariant, we will be talking about "just after the kth iteration of the for loop". "After the 0th iteration" refers to the point where we are just about to enter the loop, but have not executed any iteration of the loop yet (at this point, i=0). "After the kth iteration" refers to the point after we have executed the loop k times and incremented the loop counter in preparation for the next time through (so we are about to enter the loop for the k+1st time with i=k).

a. Just after the kth iteration of the for loop, sublength is the length of the maximum contiguous subsequence that adds up to 25 that is found so far up to iteration k, and substart is the starting index of that subsequence.

b. Just after the kth iteration of the for loop, the variable sum (25.

c. Just after the kth iteration of the for loop, sublength is the number of integers in a sequence that add up to 25, and substart is the start index.

2. (6 points) R-5.4b and R-5.4d. Be sure to show how you got your answer.

3. Let T(n) be a function denoting an approximation of the best-case running time for QuickSort on an array of size n, when the elements in the array are assumed to be distinct. Write T(n) as a recurrence equation. Then figure out the asymptotic order of T(n) (in big-Oh notation). For both parts, explain how you got your result.

4. (10 points) Design a divide-and-conquer algorithm for finding both the maximum and minimum elements in an array of n numbers. Write your algorithm in detailed pseudocode. Algorithms that are not divide-and-conquer will get very few points.

5. Let f(n) denote the worst-case number of key comparisons in your algorithm from #4, on input size n. (A key comparison is anytime you compare one of the items in the array with another). Write a recurrence equation for f(n), showing how you got your result. .

6. Solve your recurrence equation f(n), (into a closed form expression).

Note: You will only get credit for 1 extra credit problem.

7. [Extra Credit]: C-5.7

8. [Another Extra Credit]: Suppose you wanted to minimize the number of key comparisons in order to find both the minimum and maximum of a set of numbers. What is the best way of doing so? What is the minimum number of key comparisons necessary? Explore several options, including: 1) What is the best non-divide-and-conquer way of doing this, and what is its cost (in terms of key comparisons)? Try several divide and conquer approaches, including dividing the array into two versus dividing into three. Which is better? What are the costs (in key comparisons)?

