Computing and Software Systems 343, Spring 2004
Mathematical Principles of Computing II

Assignment 5. Version 1.1.

Due Wednesday, May 5. Each problem is worth 5 points, unless otherwise specified.

1. In this problem, we look at the exact number of ke​y comparisons for several sorting algorithms. (Note: you should be able to get the answers by looking at your notes. If they aren't in your notes, talk to another fellow student!)

a. Give the asymptotic order of the exact number of key comparisons performed in the worst-case for the following sorting algorithms:

i. PQ-Sort using a sorted list (i.e. insertion sort)

ii. PQ-Sort using a heap (i.e. heap-sort)

iii. MergeSort

iv. QuickSort

b. For each answer that is O(n log n) from part (a), rewrite the answer by giving the constant in front of the n log n. For example, if QuickSort in the worst-case takes exactly 5n log2n + 2n + 2 comparisons in the worst case, then write 5n log2n instead of O(n log n).

2. One student has tried to argue why Quicksort runs in (n log n) time in the best case, given the assumption that the n input items are distinct. Is his argument correct? Are there any missing steps in his argument? Explain why his argument is correct or incorrect. If it is incorrect, is it true that quicksort runs in (n log n) in the best-case, when the input items are distinct?

We know that the average case cost for quicksort (Theorem 4.11) is O(n log n). Quicksort’s best case cost must be faster than the average case cost, and thus is (n log n) or possibly faster. The sorting lower bound (Theorem 4.12) says that any comparison-based algorithm must take at least (n log n) time. Since Quicksort is a comparison-based algorithm, it also must take at least n log n) time in the best-case. Thus, the best-case cost must be exactly
(n log n).

3. 10 points total, 5 points for each part. [Taken from Baase's Computer Algorithms book] At a large university, each semester, a program must be run to detect student computer accounts that are to be deleted. Any enrolled student may have an account, and they have a "grace period" of one semester after they leave. So an account is to be deleted if the student is not currently enrolled and was not enrolled in the previous semester.

a. Outline an algorithm to make a list of accounts to be deleted. The next two paragraphs describe the files you have to work with. You don't have to give pseudocode, but be clear about what you are doing. High-level pseudocode might be ideal.

The Account File is sorted by username. Each entry contains the username, real name, ID number, creation date, expiration date, major code, and other fields. The expiration date is set as Dec. 31, 2030 when a student account is established because the true expiration date is unknown at that time. For faculty accounts and other nonstudent accounts, the ID number field contains zero. There are approximately 12,000 accounts in the file.

The Student Master File, maintained by the administration, contains a record for each student currently enrolled, approximately 30,000 entries. It is sorted alphabetically by real name. Each record includes the student ID number and other information. There are duplicate names; that is, sometimes different students have the same name. The Student Master File for the previous semester is available.

b. Let n be the number of accounts and s be the number of students. express the asymptotic order of the running time of your method (worst-case) in terms of n and s. (Give some justification for your answer).

[Side note: The system manager at a real university reported that two people wrote programs for this problem. One took 45 minutes to run; the other took 2 minutes.]

4. Write high-level pseudocode for the fast divide-and-conquer algorithm that does big-integer multiplication. You code must be the fast version that runs in O(n1.585) time on integers of length n. Your inputs should be two strings of digits (like "903826") that represent a number in base 10 notation. Your return value should be a string representing the value of the multiplication. You may assume that you already have all the building block methods needed to write the big integer multiplication. This includes knowing how to multiply single-digit numbers as strings, add or subtract numbers of any size, and multiply or divide by any power of 10. Thus, for example, you have a multiplication method that could take in strings "5" and "8" and then return string "40", and you have an addition method that would take inputs "1212121" and "23201111111" and return the sum of "23202323232". You may also assume these methods that you have also work for strings representing negative numbers.

5. R-5.11. Be sure to show your work.

6. R-5.12. Be sure to answer both questions. "Characterize as a knapsack problem" means stating what knapsack problem you would solve in order to solve Sally's problem. In other words, how do the benefits and weights and items translate into widgets and dollars?

7. [Extra Credit]: C-5.5.

