Computing and Software Systems 343, Spring 2004
Mathematical Principles of Computing II

Assignment 6. Version 1.0.

Due Wednesday, May 12. Each problem is worth 5 points, unless otherwise specified.

1. Illustrate the performance of the line-breaking algorithm on this sentence with line width 16. As input, assume the entire paragraph consists of just the first sentence of this problem, starting from "Illustrate" and ending with "16.". Because we count spaces after the words, the first word has length 11, and the last word has length 4. Note that "line-breaking" should be considered one word of length 14. You should compute the optimal way of breaking into lines that gives the minimum penalty using the dynamic programming algorithm. At a minimum, you need to show the values of the array that holds the subproblem solutions.

2. <15 points>The binomial coefficients can be defined by the recurrence equation:

C(n,k) = C(n-1,k-1) + C(n-1,k) for n > 0 and k > 0

C(n,0) = 1 for n (0

C(0,k) = 0 for k > 0.

C(n,k) is also called "n choose k" and often denoted
[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

k

n

.

It is the number of ways to choose k distinct objects from a set of n objects. Consider the following three ways to compute C(n,k) for n (k:

a. A recursive function as suggested by the recurrence relation given for C(n,k)

b. A dynamic programming algorithm

c. The formula C(n,k) =
[image: image2.wmf])!

(

!

!

k

n

k

n

-

.

Evaluate each method above by: 1) Writing an outline of the method to make it clear you understand what work is to be done. 2) Determining the amount of work done and the amount of space used by each method. Show some of your work Here you are trying to simply estimate the costs; exact counts are not necessary.

3. Consider the problem of determining how many distinct ways there are to give x cents in change using any coins from among pennies, nickels, dimes, quarters, and half-dollars. Here order does not matter, so that a penny, a dime, and a penny is the same as two pennies and a dime. As an example, there are six ways to give 17 cents change: a dime, a nickel, and two pennies; a dime and seven pennies; three nickels and two pennies; two nickels and seven pennies; one nickel and 12 pennies; and 17 pennies. You will design and write a dynamic programming algorithm that solves this problem. Code should be submitted on Blackboard; answers to questions should be submitted on paper.

a. (5 points) Describe the subproblems you wish to solve for your dynamic programming solution.

b. (10 points) Implement a dynamic programming solution in Java. Your program should ask the user for the number of cents to make change for, and then print out the total number of different ways as output. For debugging purposes, you may want to also print the number of coins of each type for each different way found. It would probably be helpful to design your program first on paper before going to code it. Call your program Change.java.

4. Explain how the greedy TaskSchedule method can be implemented in O(n log n) time. Be sure to state what data structures are used.

5. [Extra Credit, from Baase]: Suppose you have inherited the rights to 500 previously unreleased songs recorded by the popular group Raucous Recursive Rockers. You plan to release a set of five compact disks (numbered 1 through 5) with a selection of these songs. Each disk can hold a maximum of 60 minutes (= 3600 seconds) of music, and a song can't overlap from one disk to the next. Since you are a classical music fan and have no way of judging the artistic merits of these songs, you decide on the following criteria for making the selection:

1. The songs will be recorded on the set of disks in order by the date they were written.

2. The number of songs included will be maximized.

Suppose you have a list of the lengths (in seconds) of the songs, L1, L2, … L500, in order by the date they were written. (Each song is less than 60 minutes long).

Give an algorithm to determine the maximum number of songs that can be included n the set satisfying the given criteria. Hint: Let T[i][j] be the minimum amount of time needed for any i songs selected from among the first j songs. T should be interpreted to include the blank time, if any, at the end of a completed disk. In other words, if a selection of songs uses one disk plus the first 93 seconds of a second disk, count the time for that selection as 3693 seconds even if there are a few blank seconds at the end of the first disk.
_1145265800.unknown

_1145265746.unknown

