Analysis of Algorithms

An algorithm is a step-by-step procedure for \qquad solving a problem in a finite amount of time.

Math you need to know

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)
\qquad
\qquad
- properties of logarithms: $\log _{b}(x y)=\log _{b} x+\log _{b} y$
\qquad $\log _{b}(x / y)=\log _{b} x-\log _{b} y$ $\log _{b} x^{a}=a \log _{b} x$
$\log _{b} a=\log _{x} a / \log _{x} b$
- properties of exponentials:
$a^{(b+c)}=a^{b} a^{c}$
$a^{b c}=\left(a^{b}\right)^{c}$
$\mathrm{a}^{\mathrm{b}} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}$
$\mathrm{b}=\mathrm{a} \log _{\mathrm{a}}^{\mathrm{b}}$
Proof techniques (Sec. 1.3.3)
Basic probability (Sec. 1.3.4) $\quad b^{c}=a^{c^{*} \log _{a} b}$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Induction proof

Method of proving statements for (infinitely) large values of n, (n is the induction variable).
Math way of using a loop in a proof.

Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then $x^{n}-y^{n}$ is divisible by $x-y$.
Let S_{n} denote "for all x and $y, x^{n}-y^{n}$ is divisible by x $y^{\prime \prime}$

Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then $x^{n}-y^{n}$ is divisible by $x-y$.
Let S_{n} denote "for all x and $y, x^{n}-y^{n}$ is divisible by $x-$ $y^{\prime \prime}$

- Proof with induction:
- Base case: show S_{1}
- Inductive Hypothesis (IH): for all $k \geq 1$, if S_{k} is true, than $\mathrm{S}_{\mathrm{k}+1}$ is true. OR
Inductive Hypothesis (IH): for all $k \geq 2$, if S_{k-1} is true, than S_{k} is true.

Example induction proof

- Prove: for all int x, for all int y, for all int n,

If n is positive, then $x^{n}-y^{n}$ is divisible by $x-y$.

- Let S_{n} denote "for all x and $y, x^{n}-y^{n}$ is divisible by $x-$ $y^{\prime \prime}$
- Proof with induction:

Pseudocode (§1.1)

- Mixture of English, math expressions, and computer code
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
- Can write at different

Very High-level pseudocode:
Algorithm $\operatorname{arrayMax}(A, n)$
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of A
currentMax $\leftarrow A[0]$
Step through each element in A, updating currentMax when a bigger element is found return currentMax
\qquad
\qquad
\qquad
\qquad
\qquad levels of detail.
\qquad

Pseudocode (§1.1)

Mixture of English, math expressions, and computer code

- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
- Can write at different levels of detail.

Detailed pseudocode
Algorithm $\operatorname{arrayMax}(A, n)$
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of A
currentMax $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$ return currentMax
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do .
- repeat \ldots until
- for ... do
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])
Input . Output

Primitive Operations

Basic computations performed by an algorithm

- Identifiable in pseudocode
- Largely independent from the programming language

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Estimating performance

- Count Primitive Operations
= time needed by RAM model
- Random Access Machine (RAM) Model has:
- A CPU
- An potentially unbounded bank of memory cells
- Each cell can hold an arbitrary number or character
- Memory cells are numbered
- Accessing any cell takes unit time

Running Time (§1.1)

The running time grows with the input size.

- Running time varies with different input
- Worst-case: look at input causing most operations
Best-case: look at input causing least number of operations
- Average case: between best

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Counting Primitive Operations (§1.1)

Worst-case primitive operations count, as a function of the input size

Algorithm arrayMax $(\boldsymbol{A}, \boldsymbol{n})$	\# operations
currentMax $\leftarrow A[0]$	2
for $\boldsymbol{i} \leftarrow 1$ to $n-1$ do	$\mathbf{1}+\boldsymbol{n}$
if $A[i]>$ currentMax then	$2(\boldsymbol{n}-1)$
currentMax $\leftarrow \boldsymbol{A}[\boldsymbol{i}]$	$2(\boldsymbol{n}-1)$
increment counter $\boldsymbol{i}\}$ return currentMax	$2(\boldsymbol{n}-1)$
	1
	Total $7 \boldsymbol{n}-2$

Analysis of Algorithms v1.5 \qquad

Counting Primitive Operations (§1.1)

Best-case primitive operations count, as a function of the input size
$\left.\begin{array}{|l|c|}\hline \text { Algorithm arrayMax }(\boldsymbol{A}, \boldsymbol{n}) & \text { \# operations } \\ \begin{array}{l}\text { currentMax } \leftarrow \boldsymbol{A}[0]\end{array} & 2 \\ \text { for } i \leftarrow 1 \text { to } n-1 \text { do } & \mathbf{1}+\boldsymbol{n} \\ \text { if } \boldsymbol{A}[i]>\text { currentMax then } & 2(\boldsymbol{n}-1) \\ \begin{array}{l}\text { currentMax }\end{array} \leftarrow \boldsymbol{A}[\boldsymbol{i}]\end{array}\right)$

Defining Worst [W(n)], Best $[\mathrm{B}(\mathrm{N})]$, and Average [A(n)]

- Let $\mathrm{I}_{\mathrm{n}}=$ set of all inputs of size n .
- Let $\mathrm{t}(\mathrm{i})=$ \# of primitive ops by alg on input i .
- $\mathrm{W}(\mathrm{n})=$ maximum $\mathrm{t}(\mathrm{i})$ taken over all i in I_{n}
- $B(n)=$ minimum $t(i)$ taken over all i in I_{n}
- $\mathrm{A}(\mathrm{n})=\sum_{i \in I_{n}} p(i) t(i), \mathrm{p}(\mathrm{i})=$ prob. of i occurring.

We focus on the worst case

- Easier to analyze
- Usually want to know how bad can algorithm be
- average-case requires knowing probability; often difficult to determine

Experimental Studies (§ 1.6)

- Implement your algorithm
- Run your implementation with inputs of varying size and composition
- Measure running time of your implementation (e. g., with

System.currentTimeMilisis())

- Plot the results

Limitations of Experiments

- Implement may be time-consuming and/or difficult
Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Infeasible to test for correctness on all possible inputs.

18

Theoretical Analysis

Uses a high-level description of the algorithm instead of an implementation

- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs

Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

- Can prove correctness

Growth Rate of Running Time

Changing the hardware/ software environment

- Affects running time by a constant factor;
- Does not alter its growth rate

Example: linear growth rate of arrayMax is an intrinsic property of algorithm.

Growth Rates

- Growth rates of functions:
- Linear $\approx n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function (for polynomials)

Constant Factors

- The growth rate is not affected by
- constant factors or
- lower-order terms
- Examples
- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$
- We can use the big-Oh notation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f}(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Analysis of Algorithms v1.5
23

Big-Oh Notation (§1.2)

- Given functions $f(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$) if there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for $n \geq n_{0}$ Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq \boldsymbol{c} n$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$
- Pick $c=3$ and $n_{0}=10$

Big-Oh Example

\qquad

More Big-Oh Examples

-7n-2

$7 n-2$ is $\mathrm{O}(\mathrm{n})$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $7 \mathrm{n}-2 \leq \mathrm{c} \bullet \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
\qquad

- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \bullet n^{3}$ for $n \geq n_{0}$
this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+\log \log n$
$3 \log n+\log \log n$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+\log \log n \leq c \bullet \log n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=2$

Analysis of Algorithms v1.5

Big-Oh Rules

\qquad
\qquad

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e., \qquad

1. Drop lower-order terms
2. Drop constant factors \qquad

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})^{\prime}$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ " \qquad
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ " \qquad

Asymptotic Algorithm Analysis

- asymptotic analysis = determining an algorithms running time in big-Oh notation
- asymptotic analysis steps:
- We find the worst-case number of primitive operations
executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We determine that algorithm arrayMax executes at most $7 n-2$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time" or "runs in order n time"
- Since constant factors and lower-order terms are eventually dropped, we can disregard them when counting primitive operations!
\qquad

Intuition for Asymptotic Notation

\qquad
\qquad
\qquad

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$ big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$ big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
little-oh
- $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$ little-omega
- $f(n)$ is $\omega(g(n))$ if is asymptotically strictly greater than $g(n)$
\qquad

Relatives of Big-Oh

- big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that $c^{\prime} \bullet g(n) \leq f(n) \leq c^{\prime \prime} \bullet g(n)$ for $n \geq n_{0}$
- little-oh
- $f(n)$ is $o(g(n))$ if, for any constant $c>0$, there is an integer constant $\mathrm{n}_{0} \geq 0$ such that $\mathrm{f}(\mathrm{n}) \leq \operatorname{cog}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
- little-omega
- $f(n)$ is $\omega(g(n))$ if, for any constant $c>0$, there is an integer constant $n_{0} \geq 0$ such that $f(n) \geq \operatorname{cog}(n)$ for $n \geq n_{0}$

Example Uses of the Relatives of Big-Oh

- $5 \mathrm{n}^{2}$ is $\Omega\left(\mathrm{n}^{2}\right)$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
let $\mathrm{c}=5$ and $\mathrm{n}_{0}=1$
- $5 \mathrm{n}^{2}$ is $\Omega(\mathrm{n})$
$\mathrm{f}(\mathrm{n})$ is $\Omega\left(\mathrm{g}(\mathrm{n})\right.$) if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
let $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$
- $\mathbf{5 n} \mathbf{n}^{\mathbf{2}}$ is $\omega(\mathrm{n})$
$\mathrm{f}(\mathrm{n})$ is $\omega(\mathrm{g}(\mathrm{n}))$ if, for any constant $\mathrm{c}>0$, there is an integer constant $\mathrm{n}_{0} \geq$ 0 such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \bullet \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
need $5 \mathrm{n}_{0}{ }^{2} \geq \mathrm{c} \bullet \mathrm{n}_{0} \rightarrow$ given c , the n_{0} that satifies this is $\mathrm{n}_{0} \geq \mathrm{c} / 5 \geq 0$ \qquad
\qquad

More math tools \& proofs

Correctness of computing average

- loop invariants and induction \qquad
Recurrence equations
-Strong induction
- Cost of recursive algorithms with recurrence equations.

Computing Prefix Averages

- asymptotic analysis examples: two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first $(i+1)$ elements of X : $A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)$
- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages 1( \(X, n\) )
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers
    Output array \(\boldsymbol{A}\) of prefix averages of \(\boldsymbol{X}\) \#operations
    \(\boldsymbol{A} \leftarrow\) new array of \(\boldsymbol{n}\) integers
    for \(i \leftarrow 0\) to \(n-1\) do
        \(s \leftarrow X[0]\)
        for \(j \leftarrow 1\) to \(i\) do
                \(s \leftarrow s+X[j]\)
        \(A[i] \leftarrow s /(i+1)\)
    return \(A\)
```


Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages \(1(X, n)\)
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers
    Output array \(\boldsymbol{A}\) of prefix averages of \(\boldsymbol{X}\) \#operations
    \(\boldsymbol{A} \leftarrow\) new array of \(\boldsymbol{n}\) integers
        \(\boldsymbol{n}\)
\(\boldsymbol{n}\)
    for \(i \leftarrow 0\) to \(n-1\) do \(\quad n\)
        \(s \leftarrow X[0] \quad 2 n\)
        for \(j \leftarrow 1\) to \(i\) do \(\quad 1+2+\ldots+(n-1)\)
        \(s \leftarrow s+X[j] \quad 3(1+2+\ldots+(n-1))\)
        \(A[i] \leftarrow s /(i+1)\)
    \(4 n\)
    return \(A \longrightarrow 1\)
```


Arithmetic Progression

- The running time of prefixAverages 1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$ - There is a simple visual proof of this fact
Thus, algorithm prefixAverages1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages (Linear, nonrecursive)

- The following algorithm computes prefix averages in linear time by keeping a running sum

```
Algorithm prefixAverages 2(X, n)
    Input array }\boldsymbol{X}\mathrm{ of }\boldsymbol{n}\mathrm{ integers
    Output array }\boldsymbol{A}\mathrm{ of prefix averages of }\boldsymbol{X}\mathrm{ #operations
    A}\leftarrow\mathrm{ new array of }\boldsymbol{n}\mathrm{ integers }\boldsymbol{n
    s\leftarrow0 1
    for }i\leftarrow0\mathrm{ to }n-1\mathrm{ do n
        s\leftarrows+X[i] n
        A[i]\leftarrows/(i+1) n
    return A 1
```

\qquad
Algorithm prefixAverages 2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time
\qquad

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage (X, A, n)
Input array \boldsymbol{X} of $\boldsymbol{n} \geq 1$ integer.
Empty array $\boldsymbol{A} ; \boldsymbol{A}$ is same size as \boldsymbol{X}.
Output array $\boldsymbol{A}[0] \ldots \boldsymbol{A}[n-1]$ changed to hold prefix averages of \boldsymbol{X}. returns sum of $X[0], X[1], \ldots, X[n-1]$

1. if $n=1$
$A[0] \leftarrow X[0]$
return $\boldsymbol{A}[0]$
2. tot $\leftarrow \operatorname{recPrefixSumAndAverage}(X, A, n-1)$
3. tot \leftarrow tot $+X[n-1]$
4. $A[n-1] \leftarrow$ tot $/ n$
5. return tot;

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage $(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{n}) \quad \mathrm{T}(\mathrm{n})$ operations Input array \boldsymbol{X} of $\boldsymbol{n} \geq 1$ integer.

Empty array $\boldsymbol{A} ; \boldsymbol{A}$ is same size as \boldsymbol{X}.
Output array $\boldsymbol{A}[0] \ldots \boldsymbol{A}[n-1]$ changed to hold prefix averages of \boldsymbol{X}. returns sum of $\boldsymbol{X}[0], \boldsymbol{X}[1], \ldots, \boldsymbol{X}[n-1] \quad$ \#operations
\qquad
if $n=1$ returns sum or $X[0], X[1], \ldots, X[n-1] \quad 1$
$A[0] \leftarrow X[0]$
return $A[0]$
tot $\leftarrow \operatorname{recPrefixSumAndAverage~}(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{n}-1) \quad 3+\mathrm{T}(\mathrm{n}-1)$
tot \leftarrow tot $+X[n-1]$
4
$A[n-1] \leftarrow$ tot $/ n$
4
return tot;

Prefix Averages, Linear

- Recurrence equation
- $T(1)=6$
- $T(n)=13+T(n-1)$ for $n>1$.

Solution of recurrence is

- $T(n)=13(n-1)+6$
- $T(n)$ is $O(n)$.

