
Shortest Path 3/5/2003 5:55 PM

1

floyd v1.1 1

Transitive Closure
Given a digraph G, the
transitive closure of G is the
digraph G* such that

G* has the same vertices
as G
if G has a directed path
from u to v (u ≠ v), G*
has a directed edge from
u to v

The transitive closure
provides reachability
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*

floyd v1.1 2

Computing the
Transitive Closure

We can perform
DFS starting at
each vertex

DFS(G,v) finds
nodes reachable
from v

for each
reachable node
w, add edge
(v,w) to G*

O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a
way to get from A to C.

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

floyd v1.1 3

Floyd-Warshall
Transitive Closure

Idea #1: Number the vertices 1, 2, …, n. Call
them v1, v2, … vn.
Idea #2: Consider paths that use only vertices
v1, v2, …, vk, as intermediate vertices
On path P2, intermediate vertices
are X,W, and Y.

P1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Subproblem definition: Gk is
a graph where

directed edge (vi, vj) if G has a
directed path from vi to vj with
intermediate vertices in the set
{v1, v2, …, vk}

Shortest Path 3/5/2003 5:55 PM

2

floyd v1.1 4

Floyd-Warshall
Transitive Closure

Constructing Gk from Gk-1 :
For each pair of vertices (vi,vj) in Gk-1

If (vi,vj) is in Gk-1, then it is also in Gk
If (vi,vk) and (vk,vj) are in Gk-1, then (vi,vj) is
in Gk.

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)

floyd v1.1 5

Floyd-Warshall’s Algorithm
Floyd-Warshall’s algorithm
numbers the vertices of G as
v1 , …, vn and computes a
series of digraphs G0, …, Gn

G0=G
Gk has a directed edge (vi, vj)
if G has a directed path from
vi to vj with intermediate
vertices in the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is
computed from Gk − 1

Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk − 1
for i ← 1 to n (i ≠ k) do

for j ← 1 to n (j ≠ i, k) do
if Gk − 1.areAdjacent(vi, vk) ∧

Gk − 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn

floyd v1.1 6

Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Shortest Path 3/5/2003 5:55 PM

3

floyd v1.1 7

Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

floyd v1.1 8

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

floyd v1.1 9

Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Shortest Path 3/5/2003 5:55 PM

4

floyd v1.1 10

Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

floyd v1.1 11

Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

floyd v1.1 12

Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Shortest Path 3/5/2003 5:55 PM

5

floyd v1.1 13

Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

