
\qquad
\qquad

Traveling Salesman Problem

- Input: Undirected weighted graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$. Let $\mathrm{W}(\mathrm{e})$ denote the cost of \qquad edge e.
Output: A tour P with minimum total \qquad cost. (A tour is a cycle P that visits all vertices exactly once). That is: for all \qquad edges e in tour P, minimize

$$
W(P)=\sum_{e \in P} W(e)
$$

BacktrackOptimalSearch(// very rough outline Let move1, move2, ... movek represent the k possible ways of making the next step.
For each possible way movei
try movei.
assuming movei was done,
make recursive call to find best solution
on smaller subproblem
overall solution cost =
best subproblem solution + cost (movei)
\qquad
keep track of best overall cost so far return best overall cost found. \qquad

line-breaking problem

Given sequence of words from one paragraph

- Return where line-breaks should occur
- Minimize empty space on each line (except for last line of paragraph)

line-breaking problem

- A simple version:
- letters and spaces have equal width
- input is set of n word lengths, $w_{1}, w_{2}, \ldots w_{n}$
- also given line width limit L.
- each length w_{i} includes one space
- Placing words i up to j on one line means

$$
\sum_{k=i}^{j} w_{i} \leq L
$$

- Penalty for extra spaces $X=L-\sum_{k=i}^{j} w_{i}$ is X^{3}
- Minimize sum of penalties from each line (no last line penalty)

MoreStuff v 1.1

Recursive Backtrack Search

Let $w[]$ be array of lengths of n words; L is line width

- Compute lineBreak(0) to solve linebreaking problem.
- Algorithm lineBreak(i) \{

Input: Integer i indicating which word subproblem starts at. Output: returns minimum total penalty when
placing $w[i], w[i+1], \ldots w[n-1]$ into lines
if $(w[i]+w[i+1]+\ldots+w[n-1]<L)$ return 0 ;
mincost \leftarrow Infinity;
$k \leftarrow{ }_{\text {while }}$
while (k words starting from w[i] fit on a line)
// meaning $(w[i]+w[i+1]+\ldots+w[i+k-1]<=L)$
linecost \leftarrow penalty from placing words $w[i]$ to $w[i+k-1]$ on one line.
totalcost \leftarrow linecost + lineBreak $(i+k)$;
$\operatorname{mincost}_{k++;} \leftarrow \min$ (totalcost, mincost) // track minimum so far $\mathrm{k}++$;
return mincost;

Example problem

Paragraph is:
Those who cannot remember the past are condemned to repeat it.

Word lengths are $6,4,7,9,4,5,4,10,3,7,4$.

- Suppose line width $\mathrm{L}=17$.

Find an optimal way of separating words into lines that minimizes penalty.

Greedy method

- Input:
- int [] w : array of word lengths.
- int n : length of w.
- int L : line length

Output:

- int [] LastWord : array for storing last word on each line.
LastWord[i] is the index of the last word stored on line i.
- // start counting arrays at index 0 .

Dynamic Programming

-DP version of Recursive backtrack

 LineBreak problem- Use array lineB[] to store subproblem costs
- line $B[i]$ is min cost of linebreaking solution for words ($w[i], w[i+1], \ldots w[n-1]$).
- compute lineB in reverse order (from $\mathrm{n}-1$ down to 0).
\qquad

linebreak DP

- for $\mathrm{i} \leftarrow \mathrm{n}-1$ downto 0 do
if $(w[i]+w[i+1]+\ldots+w[n-1]<L)$
lineB[i] $\leftarrow 0$;
else
mincost \leftarrow Infinity;
$\mathrm{k} \leftarrow 1$;
while (k words starting from $w[i]$ fit on a line)
// meaning $(w[i]+w[i+1]+\ldots+w[i+k-1]<=L)$
linecost \leftarrow penalty from placing words $w[i]$ to $w[i+k-1]$
on one line.
totalcost \leftarrow linecost + lineB $[i+k]$;
mincost $\leftarrow \min$ (totalcost, mincost) // track min. so far k++;
line $B[i]=$ mincost;
linebreak DP cost
- $O(n \mathrm{~L}) ; \mathrm{L}$ is maximum width
- Linear if L is considered constant
- Space O(n).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Longest Common Subsequence

-Given : two strings A \& B
Find longest common (possibly non- \qquad contiguous) subsequence

- Here, subsequence $=$ substring \qquad
- Example: $A=$ "R8D4F7G" $B=" 4 R D 97 G 2 "$ \qquad answer is "RD7G"

Vertex Cover

A vertex cover of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset W of V, such that, for every edge (a, b) in E, a is in W or b is in W.

- VERTEX-COVER: Given an graph G and an integer K, return a vertex cover of size K (if it exists)

Clique

A clique of a graph $G=(V, E)$ is a subgraph C \qquad that is fully-connected (every pair in C has an edge).
CLIQUE: Given a graph G and an integer K , return a clique in G of size K (if it exists) This graph has a clique of size 5

\qquad

Some Other
 Problems

- SET-COVER: Given a collection of m sets, and an integer K, pick K of the sets such that the union of the K sets is the same as the union of the whole collection of m sets.
- SUBSET-SUM: Given a set of integers and an integer K, find a subset of the integers that sums to exactly K.
- 0/1 Knapsack: Given a collection of items with weights and benefits, find a subset of weight at most W and benefit at least K .
- Hamiltonian-Cycle: Given an graph G, find a cycle in G that visits each vertex exactly once
\qquad

Outline and Reading

Strings (§9.1.1)

- Pattern matching algorithms
- Brute-force algorithm (§9.1.2)
- Boyer-Moore algorithm (§9.1.3)
- Knuth-Morris-Pratt algorithm (§9.1.4)

A string is a sequence of characters Examples of strings: - Java program - HTML document - DNA sequence - Digitized image - An alphabet Σ is the set of possible characters for a family of strings Example of alphabets: - ASCII - Unicode - $\{0,1\}$ - $\{A, C, G, T\}$ Let \boldsymbol{P} be a string of size \boldsymbol{m} - A substring $P[i . . j]$ of P is the subsequence of P consisting of the characters with ranks between i and j - A prefix of P is a substring of the type $P[0$.. $i]$ - A suffix of P is a substring of the type $P[i . . \boldsymbol{m}-1]$ Given strings \boldsymbol{T} (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P Applications: - Text editors - Search engines - Biological research			

Brute-Force Algorithm

- The brute-force pattern matching algorithm compares the pattern \boldsymbol{P} with the text \boldsymbol{T} for each possible shift of \boldsymbol{P} relative to T, until either
- a match is found, or
- all placements of the pattern have been tried
- Brute-force pattern matching runs in time $\boldsymbol{O}(\boldsymbol{n m})$
- Example of worst case:
- $T=a a a \ldots a h$
- $P=a a a h$
- may occur in images and DNA sequences
- unlikely in English text

Algorithm BruteForceMatch (T, P)
Input text \boldsymbol{T} of size \boldsymbol{n} and pattern P of size m
Output starting index of a substring of \boldsymbol{T} equal to \boldsymbol{P} or -1 if no such substring exists
for $i \leftarrow 0$ to $n-m$
\{ test shift i of the pattern \} $j \leftarrow 0$ while $j<m \wedge T[i+j]=P[j]$ $j \leftarrow j+1$ if $j=m$
return i \{match at $i\}$ else
break while loop \{mismatch $\}$ return -1 \{no match anywhere\}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad MoreStuff v 1.1 18
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Boyer-Moore Heuristics

- The Boyer-Moore's pattern matching algorithm is based on two heuristics
Looking-glass heuristic: Compare \boldsymbol{P} with a subsequence of \boldsymbol{T} moving backwards
Character-jump heuristic: When a mismatch occurs at $T[i]=c$ - If P contains c, shift P to align the last occurrence of c in P with $T[i]$
- Else, shift P to align $P[0]$ with $T[i+1]$
- Example

| a | | p | a | t | t | e | r | n | | m | a | t | c | |
| :--- |

MoreStuff v 1.1
19

Last-Occurrence Function

- Boyer-Moore's algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
- the largest index i such that $P[i]=c$ or
- -1 if no such index exists
- Example:
- $\Sigma=\{a, b, c, d\}$
- $P=a b a c a b$

\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}
$\boldsymbol{L}(\boldsymbol{c})$	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{s})$, where \boldsymbol{m} is the size of P and s is the size of Σ

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch (T, P, Σ) $L \leftarrow$ lastOccurenceFunction (P, Σ)
$i \leftarrow m-1$
$j \leftarrow m-$
repeat
if $T i i]=P[j]$
return $i\{$ match at $i\}$
else
$i \leftarrow i-1$
else
\{ character-jump \}
$l \leftarrow L[T[i]]$
$i \leftarrow \boldsymbol{i}+\boldsymbol{m}-\min (\boldsymbol{j}, 1+\boldsymbol{l})$ $\underset{i>n-1}{j \leftarrow m-1}$
until $i>n-$
return -1 \{no match \}

Case 1: $\boldsymbol{j} \leq 1+\boldsymbol{l}$

 \square

Case 2: $1+\boldsymbol{l} \leq \boldsymbol{j}$

\qquad
\qquad
\qquad
\qquad
\qquad

Example

$$
\begin{aligned}
& \begin{array}{|l|}
\hline a & b & a & c & a & a & b & a & d & c & a & b & a & c & a & b & a & a & b & b \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{a} & \boldsymbol{c} & \boldsymbol{a} & \boldsymbol{b} \\
\hline & & & & & \\
\hline & & & & 4 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Analysis

- Boyer-Moore's algorithm runs in time $\boldsymbol{O}(\boldsymbol{n m}+\boldsymbol{s})$
- Example of worst case:
- $T=a a a \ldots a$
- $P=$ baaa
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore's algorithm is significantly faster than the brute-force algorithm on English text

The KMP Algorithm - Motivation

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $P[0 . j]$ that is a suffix of $P[1 . . j]$

KMP Failure Function

- Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself

\boldsymbol{j}	0	1	2	3	4	5
$\boldsymbol{P}[\mathbf{j}]$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}
$\boldsymbol{F}(\boldsymbol{j})$	0	0	1	1	2	3

- The failure function $F(j)$ is defined as the size of the largest prefix of $P[0 . . j]$ that is also a suffix of $P[1 . . j]$
- Knuth-Morris-Pratt's algorithm modifies the bruteforce algorithm so that if a mismatch occurs at $P[j] \neq \boldsymbol{T}[i]$ we set $j \leftarrow F(j-1)$

\section*{| a | b | a | a | b | x | \cdot | \cdot | \cdot | \cdot | . |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

25

The KMP Algorithm

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i - j}$ increases by at least one (observe that $F(j-1)<j$)
- Hence, there are no more than $2 \boldsymbol{n}$ iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$

Algorithm KMPMatch (T, P)
$F \leftarrow$ failureFunction (P)
$i \leftarrow 0$
while $i<n$
if $T i]=P[j]$
if $j=m-1$
return $i-j$ \{ match \}
else
else $i \leftarrow i+1$
$\mathrm{e}^{j \leftarrow j+}$
if $j>0$
$j \leftarrow F[j-1]$
else
$i \leftarrow i+1$
return -1 \{no match \}

Computing the Failure Function

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i}-\boldsymbol{j}$ increases by at least one (observe that $F(j-1)<j$)
- Hence, there are no more than $2 \boldsymbol{m}$ iterations of the while-loop

Algorithm failureFunction(P)
$F[0] \leftarrow 0$
$i \leftarrow 1$
$i \leftarrow 0$
while $i<m$
if $P[i]=P[j]$
\{we have matched $\boldsymbol{j}+1$ chars\}
$F[i] \leftarrow j+1$
$i \leftarrow i+1$
$i \leftarrow i+1$
else if $j>0$ then
\{use failure function to shift P \}
$j \leftarrow F[j-1]$
else
$F[i] \leftarrow 0\{$ no match \}
$i \leftarrow i+1$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

| a | b | a | c | a | a | b | a | c | c | a | b | a | c | a | b | a | a | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a | b | a | c | a | b |

