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Outline and Reading
Weighted graphs (§7.1)

Shortest path problem
Shortest path properties

Dijkstra’s algorithm  (§7.1.1)
Algorithm
Edge relaxation

The Bellman-Ford algorithm  (§7.1.2)
Shortest paths in dags (§7.1.3)
All-pairs shortest paths  (§7.2.1)
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Weighted Graphs
In a weighted graph, each edge has a weight (an associated 
numerical value) 
Edge weights may represent, distances, costs, etc.
Example:

In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to 
find a path of minimum total weight of a path between u and v.

Length (or weight) of a path is the sum of the weights of its edges.
Distance of u from v is the length of a shortest path from u to v.
Example: Shortest path between Providence and Honolulu
Applications

Internet packet routing 
Flight reservations
Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Single-Source Shortest Paths 
Problem

Given a weighted graph and one source vertex s,  
find the shortest path tree T.
T is a tree rooted at s representing shortest path 
from s to every other vertex v in the graph. 

(The simple path from s to v in tree T is a shortest path from 
s to v)
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Dijkstra’s Algorithm

Solves single-source shortest path problem
Also computes distances from source vertex s
to other vertices v
Is a greedy algorithm
Assumptions:

the graph is connected
the edge weights are nonnegative
(in example, the edges are undirected)
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Dijkstra’s Algorithm

We grow a “cloud” of vertices, beginning with s and 
eventually covering all the vertices
“cloud” of vertices contains shortest path tree
Store d(v) at each vertex v; d(v) represents the 
distance of v from s in the “cloud + adjacent 
vertices” subgraph
Also track edge used to get to v
At each step

Add outside vertex u with the smallest distance d(u) into 
cloud
Update distance labels (= several edge relaxation steps)
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Example (cont.)
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Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most recently 
added to the cloud
z is not in the cloud

The relaxation of edge e 
updates distance d(z) as 
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e
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Why Dijkstra’s Algorithm 
Works

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.
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Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.
When the previous node, D, on the 
true shortest path was considered, 
its distance was correct.
But the edge (D,F) was relaxed at 
that time!
Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex.
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Dijkstra’s Algorithm
A priority queue stores 
the vertices outside the 
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a 
locator 
replaceKey(l,k) changes 
the key of an item

We store three labels 
with each vertex:

Distance (d(v) label)
locator in priority 
queue
Edge used to get there
(tree edge)

Algorithm Dijkstra (G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s then setDistance(v, 0)
else setDistance(v, ∞)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)
setTreeEdge(v, ∅)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)
setTreeEdge(z,e)
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Analysis 1
Graph operations using adjacency list structure: O(m) time 

incidentEdges iterates through incident edges once for each vertex:

Label operations: O(m) time 
We set/get the labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations (heap-based): O(n log n + m log n)
Insert and remove happens once for each vertex; at cost O(log n) 
time each.
key of any vertex w modified up to deg(w) times, at cost O(log n) time 

Dijkstra’s algorithm runs in O(m log n) time provided 
the graph is connected 
graph represented by the adjacency list structure
we use heap-based PQ
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Analysis 2
Graph operations using adjacency list structure: O(m) time 

incidentEdges iterates through incident edges once for each vertex:

Label operations: O(m) time 
We set/get the labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations (unsorted sequence): O(n2 + m)
Insert and remove happens once for each vertex; at cost O(n) time 
each
key of any vertex w modified up to deg(w) times, at cost O(1) each 
time

Dijkstra’s algorithm runs in O(n2) time provided 
the graph is connected 
graph represented by the adjacency list structure
we use unsorted-sequence based PQ
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Why It Doesn’t Work for 
Negative-Weight Edges

If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 
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Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

C’s true distance is 1, but 
it is already in the cloud 

with d(C)=5!
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Bellman-Ford Algorithm
Works even with negative-
weight edges (on directed 
graphs)
Iteration i finds all shortest 
paths that use i edges.
Running time: O(nm).
Can be extended to detect 
a negative-weight cycle if it 
exists 

How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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DAG-based Algorithm

Only for DAGs
Works even with 
negative-weight edges
Uses topological order
Doesn’t use any fancy 
data structures
Is much faster than 
Dijkstra’s algorithm
Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

Perform a topological sort of the vertices
for u ← 1 to n do {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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All-Pairs Shortest Paths

Find the distance between every pair of vertices in a 
weighted directed graph G.
number vertices in G: 1,2,…, n
Store as a matrix D, so D[i,j] represents cost of 
shortest path from i to j.
Distance may be infinite, meaning no path. 
Possible solutions: 

Use Dijkstra’s algorithm n times, one for each vertex
Only works if no negative edges
takes O(nmlog n) time.

Use Bellman-Ford n times, one for each vertex
takes O(n2m) time.

O(n3) time with Floyd-Warshall
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Floyd-Warshall’s Algorithm

Extension of reachability algorithm
Based on similar recurrence:

Let Dk[i,j] denote cost of shortest path from i to j
whose intermediate vertices are a subset of 
{1,2,…,k}.
Then Dk[i,j] = 
min(Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j]).

What is D0[i,j]? What is Dn[i,j]?
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Floyd-Warshall All-Pairs 
shortest paths

Computing Dk from Dk-1 :
For each pair of vertices (i,j) in Dk-1 set Dk[i,j]  
to minimum of

Dk-1[i,j] (previous shortest path)
Dk-1[i,k] + Dk-1[k,j] (new possible shortest path going 
through k

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
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All-Pairs Shortest Paths using 
Floyd-Warshall

Non-recursive 
dynamic 
programming version 
of Floyd-Warshall
O(n3) time

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j) 

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do 
for i ← 1 to n do    

for j ← 1 to n do    
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)


