
Shortest Path 11/26/2003 10:19 AM

1

Shortest Paths v1.1 1

Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Shortest Paths v1.1 2

Outline and Reading
Weighted graphs (§7.1)

Shortest path problem
Shortest path properties

Dijkstra’s algorithm (§7.1.1)
Algorithm
Edge relaxation

The Bellman-Ford algorithm (§7.1.2)
Shortest paths in dags (§7.1.3)
All-pairs shortest paths (§7.2.1)

Shortest Paths v1.1 3

Weighted Graphs
In a weighted graph, each edge has a weight (an associated
numerical value)
Edge weights may represent, distances, costs, etc.
Example:

In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142 1205

Shortest Path 11/26/2003 10:19 AM

2

Shortest Paths v1.1 4

Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight of a path between u and v.

Length (or weight) of a path is the sum of the weights of its edges.
Distance of u from v is the length of a shortest path from u to v.
Example: Shortest path between Providence and Honolulu
Applications

Internet packet routing
Flight reservations
Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849
80

2

138717
43

1843

1099
1120

1233

337

2555

142 1205

Shortest Paths v1.1 5

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142 1205

Shortest Paths v1.1 6

Single-Source Shortest Paths
Problem

Given a weighted graph and one source vertex s,
find the shortest path tree T.
T is a tree rooted at s representing shortest path
from s to every other vertex v in the graph.

(The simple path from s to v in tree T is a shortest path from
s to v)

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142 1205

Shortest Path 11/26/2003 10:19 AM

3

Shortest Paths v1.1 7

Dijkstra’s Algorithm

Solves single-source shortest path problem
Also computes distances from source vertex s
to other vertices v
Is a greedy algorithm
Assumptions:

the graph is connected
the edge weights are nonnegative
(in example, the edges are undirected)

Shortest Paths v1.1 8

Dijkstra’s Algorithm

We grow a “cloud” of vertices, beginning with s and
eventually covering all the vertices
“cloud” of vertices contains shortest path tree
Store d(v) at each vertex v; d(v) represents the
distance of v from s in the “cloud + adjacent
vertices” subgraph
Also track edge used to get to v
At each step

Add outside vertex u with the smallest distance d(u) into
cloud
Update distance labels (= several edge relaxation steps)

Shortest Paths v1.1 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Example

4
CB

A

E

D

F

0

28

∞ ∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

27

5 8

48

7 1

2 5

2

3 9

3

Shortest Path 11/26/2003 10:19 AM

4

Shortest Paths v1.1 10

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Shortest Paths v1.1 11

Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most recently
added to the cloud
z is not in the cloud

The relaxation of edge e
updates distance d(z) as
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e

Shortest Paths v1.1 12

Why Dijkstra’s Algorithm
Works

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.
When the previous node, D, on the
true shortest path was considered,
its distance was correct.
But the edge (D,F) was relaxed at
that time!
Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

Shortest Path 11/26/2003 10:19 AM

5

Shortest Paths v1.1 13

Dijkstra’s Algorithm
A priority queue stores
the vertices outside the
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a
locator
replaceKey(l,k) changes
the key of an item

We store three labels
with each vertex:

Distance (d(v) label)
locator in priority
queue
Edge used to get there
(tree edge)

Algorithm Dijkstra (G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s then setDistance(v, 0)
else setDistance(v, ∞)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)
setTreeEdge(v, ∅)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)
setTreeEdge(z,e)

Shortest Paths v1.1 14

Analysis 1
Graph operations using adjacency list structure: O(m) time

incidentEdges iterates through incident edges once for each vertex:

Label operations: O(m) time
We set/get the labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations (heap-based): O(n log n + m log n)
Insert and remove happens once for each vertex; at cost O(log n)
time each.
key of any vertex w modified up to deg(w) times, at cost O(log n) time

Dijkstra’s algorithm runs in O(m log n) time provided
the graph is connected
graph represented by the adjacency list structure
we use heap-based PQ

Shortest Paths v1.1 15

Analysis 2
Graph operations using adjacency list structure: O(m) time

incidentEdges iterates through incident edges once for each vertex:

Label operations: O(m) time
We set/get the labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations (unsorted sequence): O(n2 + m)
Insert and remove happens once for each vertex; at cost O(n) time
each
key of any vertex w modified up to deg(w) times, at cost O(1) each
time

Dijkstra’s algorithm runs in O(n2) time provided
the graph is connected
graph represented by the adjacency list structure
we use unsorted-sequence based PQ

Shortest Path 11/26/2003 10:19 AM

6

Shortest Paths v1.1 16

Why It Doesn’t Work for
Negative-Weight Edges

If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud

with d(C)=5!

Shortest Paths v1.1 17

Bellman-Ford Algorithm
Works even with negative-
weight edges (on directed
graphs)
Iteration i finds all shortest
paths that use i edges.
Running time: O(nm).
Can be extended to detect
a negative-weight cycle if it
exists

How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Shortest Paths v1.1 18

∞

-2

Bellman-Ford Example

∞∞

0

∞

∞

∞

48

7 1

-2 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-2 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-2 5
3 9

∞

8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

Shortest Path 11/26/2003 10:19 AM

7

Shortest Paths v1.1 19

DAG-based Algorithm

Only for DAGs
Works even with
negative-weight edges
Uses topological order
Doesn’t use any fancy
data structures
Is much faster than
Dijkstra’s algorithm
Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

Perform a topological sort of the vertices
for u ← 1 to n do {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Shortest Paths v1.1 20

∞

-2

DAG Example

∞∞

0

∞

∞

∞

48

7 1

-5 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-5 5
3 9

∞

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9 4

1

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

Shortest Paths v1.1 21

All-Pairs Shortest Paths

Find the distance between every pair of vertices in a
weighted directed graph G.
number vertices in G: 1,2,…, n
Store as a matrix D, so D[i,j] represents cost of
shortest path from i to j.
Distance may be infinite, meaning no path.
Possible solutions:

Use Dijkstra’s algorithm n times, one for each vertex
Only works if no negative edges
takes O(nmlog n) time.

Use Bellman-Ford n times, one for each vertex
takes O(n2m) time.

O(n3) time with Floyd-Warshall

Shortest Path 11/26/2003 10:19 AM

8

Shortest Paths v1.1 22

Floyd-Warshall’s Algorithm

Extension of reachability algorithm
Based on similar recurrence:

Let Dk[i,j] denote cost of shortest path from i to j
whose intermediate vertices are a subset of
{1,2,…,k}.
Then Dk[i,j] =
min(Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j]).

What is D0[i,j]? What is Dn[i,j]?

Shortest Paths v1.1 23

Floyd-Warshall All-Pairs
shortest paths

Computing Dk from Dk-1 :
For each pair of vertices (i,j) in Dk-1 set Dk[i,j]
to minimum of

Dk-1[i,j] (previous shortest path)
Dk-1[i,k] + Dk-1[k,j] (new possible shortest path going
through k

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k

Shortest Paths v1.1 24

All-Pairs Shortest Paths using
Floyd-Warshall

Non-recursive
dynamic
programming version
of Floyd-Warshall
O(n3) time

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j)

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

