Quick-Sort

Outline and Reading

Quick-sort (§4.3)

- Algorithm
- Partition step
- Quick-sort tree
- Execution example
-Analysis of quick-sort (4.3.1)

Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- Divide: pick a random element x (called pivot) and partition S into
- L elements less than x
- \boldsymbol{E} elements equal \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Recur: sort L and G
- Conquer: join L, E and G

- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Partition

- We partition an input sequence as follows:
- We remove, in turn, each element y from S and
- We insert y into L, E or \boldsymbol{G}, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $\boldsymbol{O}(1)$ time
* Thus, the partition step of quick-sort takes $\boldsymbol{O}(\boldsymbol{n})$ time

Execution Example (cont.)

*Partition, recursive call, pivot selection

More Sorting v 1.1

Execution Example (cont.)
Partition, recursive call, base case

Execution Example (cont.)

-Recursive call, pivot selection

Execution Example (cont.)

-Partition, ..., recursive call, base case

Execution Example (cont.)

- Join, join

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum

$$
\boldsymbol{n}+(\boldsymbol{n}-1)+\ldots+2+1
$$

Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
depth time

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
- Good call: the sizes of L and G are each less than $3 s / 4$
- Bad call: one of L and G has size greater than $3 s / 4$

Good call

Bad call

- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

- Many sorting algorithms are comparison based.
- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, $x_{1}, x_{2}, \ldots, x_{n}$.

Comparison-Based Sorting (§ 4.4)

Sorting Lower Bound

The Lower Bound

Any comparison-based sorting algorithms takes at least $\log (\mathrm{n}!)$ time

- Therefore, any such algorithm takes time at least

$$
\log (n!) \geq \log \left(\frac{n}{2}\right)^{\frac{n}{2}}=(n / 2) \log (n / 2)
$$

- That is, any comparison-based sorting algorithm must run in $\Omega(\mathrm{n} \log \mathrm{n})$ time.

Bucket-Sort (§ 4.5.1)

Let be S be a sequence of n (key, element) items with keys in the range $[0, \boldsymbol{N}-1]$
Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets); N total buckets.
Phase 1: Empty sequence \boldsymbol{S} by moving each item $(\boldsymbol{k}, \boldsymbol{o})$ into its bucket $\boldsymbol{B}[\boldsymbol{k}]$
Phase 2: For $\boldsymbol{i}=0, \ldots, \boldsymbol{N}-1$, move the items of bucket $B[i]$ to the end of sequence S

Bucket-Sort (§ 4.5.1)

Phase 1: Move items into buckets
Phase 2: Move buckets into sequence, in order.

- Analysis:
- Phase 1 takes $\boldsymbol{O}(\boldsymbol{n})$ time
- Phase 2 takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{N})$ time

Bucket-sort takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{N})$ time

- Correctness:
- What are loop invariants for Phase 1 and 2?

Algorithm bucketSort(S, N) Input sequence S of (key, element) items with keys in the range $[0, N-1]$
Output sequence S sorted by increasing keys
$B \leftarrow$ array of N empty sequences while \neg S.isEmpty() $f \leftarrow S$. first () $(k, o) \leftarrow$ S.remove (f) $B[k]$.insertLast $((k, o))$
for $i \leftarrow 0$ to $N-1$ while $\neg B[i]$.isEmpty () $f \leftarrow B[i]$.first () $(k, o) \leftarrow B[i]$.remove (f) S.insertLast $((k, o))$

Bucket-Sort Properties

- Keys have a fixed range of values.

Keys are NOT compared.
bucketSort is a stable sort.
-Stable Sort Property:

- Any two items with the same key will be in the same relative order after sorting.

Lexicographic Order

- A \boldsymbol{d}-tuple is a sequence of \boldsymbol{d} keys $\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \ldots, \boldsymbol{k}_{\boldsymbol{d}}\right)$, where key $\boldsymbol{k}_{\boldsymbol{i}}$ is said to be the \boldsymbol{i}-th dimension of the tuple
- Example:
- The Cartesian coordinates of a point in space are a 3-tuple
- The lexicographic order of two d-tuples is recursively defined as follows

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{d}\right) & <\left(y_{1}, y_{2}, \ldots, y_{d}\right) \\
& \Leftrightarrow \\
x_{1}<y_{1} \vee x_{1}=y_{1} \wedge & \left(x_{2}, \ldots, x_{d}\right)<\left(y_{2}, \ldots, y_{d}\right)
\end{aligned}
$$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.

Radix-Sort (§ 4.5.2)

- Radix-sort uses bucket-sort to sort each dimension in a stable manner.
- Radix-sort is applicable to tuples where the keys in each dimension i are integers in the range $[0, N-1]$
- Radix-sort runs in time $\boldsymbol{O}(\boldsymbol{d}(\boldsymbol{n}+\boldsymbol{N}))$

Algorithm radixSort(S, N)
Input sequence S of d-tuples such that $(0, \ldots, 0) \leq\left(x_{1}, \ldots, x_{d}\right)$ and $\left(x_{1}, \ldots, x_{d}\right) \leq(N-1, \ldots, N-1)$ for each tuple $\left(x_{1}, \ldots, x_{d}\right)$ in S
Output sequence S sorted in
lexicographic order
for $i \leftarrow d$ downto 1 bucketSort(S, N, i) (bucketSorts \boldsymbol{S} on dimension \boldsymbol{i})

Example:

$(7,4,6)(5,1,5)(2,4,6)(2,1,4)(3,2,4)$
$(2,1,4)(3,2,4)(5,1,5)(7,4,6)(2,4,6)$
$(2,1,4)(5,1,5)(3,2,4)(7,4,6)(2,4,6)$
$(2,1,4)(2,4,6)(3,2,4)(5,1,5)(7,4,6)$

Radix-Sort for

 Base 10 Numbers- Consider a sequence of n d-digit integers

$$
x=x_{d-1} \ldots x_{1} x_{0}
$$

- We represent each element as a d-tuple of integers in the range $[0,9]$ and apply bucket-sort with $N=10$
- This application of the radix-sort algorithm runs in $\boldsymbol{O}(\boldsymbol{d} \boldsymbol{n})$ time
- For example, we can sort a sequence of 10 -digit integers in linear time

Algorithm base10RadixSort(S)
Input sequence S of \boldsymbol{d}-digit integers
Output sequence S sorted replace each element \boldsymbol{x} of S with the item $(0, x)$
for $i \leftarrow 0$ to $d-1$ replace the key \boldsymbol{k} of each item $(\boldsymbol{k}, \boldsymbol{x})$ of \boldsymbol{S} with digit $\boldsymbol{x}_{\boldsymbol{i}}$ of \boldsymbol{x}
bucketSort(S, 10)

Example

- Sorting a sequence of 4-digit integers

