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Outline and Reading (§6.4)

Reachability (§6.4.1)
Directed DFS
Strong connectivity

Directed Acyclic Graphs (DAG’s) 
(§6.4.4)

Topological Sorting
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Digraphs

A digraph is a graph 
whose edges are all 
directed

Short for “directed graph”

Applications
one-way streets
flights
task scheduling A

C

E

B
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Digraph Application
Scheduling: edge (a,b) means task a must be 
completed before b can be started

The good life
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Directed DFS
DFS on digraphs traverses 
edges only along their proper 
direction
In the directed DFS 
algorithm, we have four 
types of edges

discovery edges
back edges
forward edges
cross edges

A directed DFS starting at a 
vertex s determines the 
vertices reachable from s
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Directed DFS example

DFS_Sweep starts at A, then B,…
tree, back, cross
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DAGs and Topological Ordering
A directed acyclic graph (DAG) is a 
digraph that has no directed cycles
A topological ordering of a digraph 
is a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j
Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG
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write c.s. program

play

Topological Sorting
Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1
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make cookies 
for professors
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Note: This algorithm is different than the one in 
Goodrich-Tamassia

Running time: O(n + m) [with smart implementation]  How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H
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Topological Sorting 
Algorithm using DFS

Simulate the algorithm by using 
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output a labeling of the vertices of G

in the connected component of v in 
topological order

setLabel(v, VISITED)
for all e ∈ G.outIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}
setLabel(e, VISITED)

Label v with topological number n
n ← n - 1

Algorithm topoDFS_Sweep(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example

9
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Strong Connectivity
Each vertex can reach all other vertices
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Pick a vertex v in G.
Perform a DFS from v in G.

If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.

If there’s a w not visited, print “no”.
Else, print “yes”.

Running time: O(n+m).

Strong Connectivity 
Algorithm

G:

G’:
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Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph
Can be computed in O(n+m) time using DFS

Strongly Connected 
Components

{ a , c , g }

{ f , d , e , b }
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SCC algorithm

Using DFS_Sweep for directed graphs, construct list L 
of reverse finish order of the vertices in the traversal.

Node is finished when traversal leaves it permanently.

Do another DFS_Sweep on GR, (G with edges 
reversed), with the following modification: in 
DFS_Sweep outer loop, start DFS calls on vertices 
according to the order in list L.
Each spanning tree produced by DFS_Sweep on GR

will contain all nodes from exactly one SCC of G
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Strongly Connected 
Components
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Strongly Connected 
Components
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SCC Algorithm, more detail
// Phase 1
Run DFS_Sweep on G, returning a list L of nodes in reverse 
finish order. Done by adding vertex v to the front of L after 
traversal on v is finished in DFS_Sweep.

// Phase 2a
Construct GR from G by copying the vertices, and then adding 
the reverse of every edge from G to GR.

// Phase 2b
Do a modified DFS_Sweep traversal on GR, where list L is used 
to order the DFS calls. Each DFS call labels vertices traversed 
with a different SCC number.

// Final Phase: 
Label vertices and edges of G. 
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DFS Phase 1
Construct list L
Similar to topological sort

O(n+m) time.

Algorithm SCC1DFS(G, v)
Input graph G and a start vertex v of G
Output vertices of G in the connected 

component of v added to L,
according to reverse finish order

setLabel(v, VISITED)
for all e ∈ G.outIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
SCC1DFS(G, w)

else
{e is a forward or cross edge}

L.insertFirst(v)

Algorithm SCC1DFS_Sweep(G)
Input dag G
Output list L of vertices of G in

reverse finish order.
L ← empty list
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
SCC1DFS(G, v)
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DFS Phase 2b
Similar to Connected 
Components

O(n+m) time.

Algorithm SCC2bDFS(GR, v, sccNum)
Input graph GR and a start vertex v
Output vertices of GR in the connected 

component of v labeled by 
sccNum

setLabel(v, VISITED)
Label v with sccNum
for all e ∈ G.outIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
SCC2bDFS(G, w)

else
{e is a forward or cross edge}

Algorithm SCC2bDFS_Sweep(GR,L)
Input dag GR, list L
Output Labeling of vertices in 
GR by scc component number

sccNum←1
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ L, {traverse L in order}

if getLabel(v) = UNEXPLORED
SCC2bDFS(G, v, sccNum)
sccNum++
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Correctness of SCC algorithm

Lemma 1: In terms of vertices, SCC’s of G are the 
same as the SCC’s of GR.
Lemma 2: For graph G, let F be a forest generated by 
DFS_Sweep on G. Let S be a tree of F. Then S 
contains one or more complete SCC’s of G. (No 
partial SCC’s).
Lemma 3a: Let F be the forest generated by SCC 
phase 2b, and S be a spanning tree in F. Let x be the 
root of S, and v be a descendent of x.  Then there is 
a path from v to x in GR. 
Lemma 3b: Let S be as in Lemma 3a. S combined 
with other edges in GR form a strongly connected 
subgraph of GR.
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Breadth-First Search

CB

A

E

D

L0

L1

F
L2
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Outline and Reading
Breadth-first search (§6.3.3)

Algorithm
Example
Properties
Analysis
Applications

DFS vs. BFS  (§6.3.3)
Comparison of applications
Comparison of edge labels
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Breadth-First Search

Breadth-first search (BFS) is 
general graph traversal technique
Visits all the vertices and edges
with n vertices and m edges takes O(n + m ) time
Like searching a binary tree level by level 

A BFS can 
Determine whether G is connected
Compute the connected components of G
Compute a spanning forest of G
Find and report a path with the minimum number of edges 
between two given vertices 
Find a simple cycle, if there is one
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Example
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A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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Example (cont.)
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BFS Algorithm
The algorithm uses a 
queue to keep track of 
vertices

Algorithm BFS(G, s)
Q ← new empty queue
Q.enqueue(s)
setLabel(s, VISITED)
while ¬Q.isEmpty()

v ← Q.dequeue() 
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Q.enqueue(w)

else
setLabel(e, CROSS)

Algorithm BFS_Sweep(G)
Input graph G
Output labeling of the edges 

and the vertices  of G 
for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Properties
Notation

Gs: connected component of s
Li: nodes at depth i in BFS tree.

Property 1
BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts
of Gs; Ts called BFS tree

Property 3
For each vertex v in Li

The path of Ts from s to v has i
edges 
Every path from s to v in Gs has at 
least i edges
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Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or CROSS

Each vertex is inserted once into Q
Inner loop of BFS runs in O(deg(v)) time
BFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

Recall that Σv deg(v) = 2m
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Applications
Can specialize the BFS traversal of a graph G
to solve the following problems in O(n + m)
time

Compute the connected components of G
Compute a spanning forest of G
Find a simple cycle in G, or report that G is a 
forest
Given two vertices of G, find a minimum length 
path in G (if it exists)
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DFS vs. BFS
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DFS BFS

√Topological sort, Biconnected
components, SCC

√Shortest paths

√√Spanning forest, connected 
components, paths, cycles

BFSDFSApplications

Directed Graphs DFS 1.3 42

DFS vs. BFS (cont.)

Back edge (v,w)
w is an ancestor of v in 
the tree of discovery 
edges

Cross edge (v,w)
w is in the same level as 
v or in the next level in 
the tree of discovery 
edges
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DFS BFS

On undirected graphs


