DFS on Directed Graphs

Directed Graphs DFS 1.3 1

Outline and Reading (§6.4)

#Reachability (§6.4.1) %/

= Directed DFS
= Strong connectivity

#Directed Acyclic Graphs (DAG's)

(86.4.4)
= Topological Sorting

Directed Graphs DFS 1.3 2

‘Digraphs

A digraph is a graph

whose edges are all
directed (D)
= Short for “directed graph”

Applications ©
= one-way streets e
= flights 7
= task scheduling o

Directed Graphs DFS 1.3 3

‘Digraph Application

| # Scheduling: edge (a,b) means task a must be
completed before b can be started

<

The good life

Directed Graphs DFS 1.3 4

Directed DFS

DFS on digraphs traverses
edges only along their proper
direction

In the directed DFS
algorithm, we have four
types of edges

= discovery edges
= back edges

= forward edges
= Cross edges

A directed DFS starting at a
vertex s determines the
vertices reachable from s

Directed Graphs DFS 1.3 5

Directed DFS example

#DFS_Sweep starts at A, then B,...

= tree, back, cross
— = >

Directed Graphs DFS 1.3

'DAGs and Topological Ordering

A directed acyclic graph (DAG) is a 0 G
digraph that has no directed cycles e

% A topological ordering of a digraph

is a numbering 0
Vis e

co Vy
of the vertices such that for every 0 DAG G
edge (v;, v), we have i <j
4 Example: in a task scheduling vy Vs

digraph, a topological ordering a
task sequence that satisfies the v,
precedence constraints

Theorem vy
A digraph admits a topological v)
ordering if and only if it is a DAG Topological
ordering of G
Directed Graphs DFS 1.3 7

11

dream about graphs

Directed Graphs DFS 1.3 8

Algorithm for Topological Sorting

@ Note: This algorithm is different than the one in
Goodrich-Tamassia

Method TopologicalSort(G)

He«G // Temporary copy of G

n < G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v<—n
nen-1
Remove v from H

Running time: O(n + m) [with smart implementation] How...?

Directed Graphs DFS 1.3 9

Topological Sorting

“Algorithm using

4 Simulate the algorithm by using
depth-first search

Algorithm topoDFS_Sweep(G)
Input dag G
Output topological ordering of G
n < G.numVertices()
for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

4 O(n+m) time.

DFS

Algorithm topological DFS(G, v)
Input graph G and a start vertex v of G
Output a labeling of the vertices of G
in the connected component of v in
topological order
setLabel(v, VISITED)
for all ¢ € G.outlncidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
topologicalDFS(G, w)
else
{e is a forward or cross edge}
setLabel(e, VISITED)
Label v with topological number n
nen-1

Directed Graphs DFS 1.3 10

Topological Sorting Example

Directed Graphs DFS 1.3 11

Directed Graphs DFS 1.3 12

_Topological Sorting Example

Directed Graphs DFS 1.3 13

Topological Sorting Example

Directed Graphs DFS 1.3 14

_Topological Sorting Example

Directed Graphs DFS 1.3 15

_Topological Sorting Example

Directed Graphs DFS 1.3 16

Topological Sorting Example

Directed Graphs DFS 1.3 17

_Topological Sorting Example

Directed Graphs DFS 1.3 18

_Topological Sorting Example

Directed Graphs DFS 1.3 19

Topological Sorting Example

20

A

Directed Graphs DFS 1.3 21

Strong Connectivity
“Algorithm

% Pick a vertex vin G.
4% Perform a DFS from v in G.
= If there's a w not visited, print “no”.
Let G’ be G with edges reversed.
Perform a DFS from v in G'.
= If there’s a w not visited, print “no”.
= Else, print “yes”.

4 Running time: O(n+m).

22

Directed Graphs DFS 1.3

Strongly Connected
Components

4 Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph
Can be computed in O(n+m) time using DFS

@
TS0 @ (a,c.g}
O~e
/ () {f,d,e,b}

Directed Graphs DFS 1.3 23

SCC algorithm

% Using DFS_Sweep for directed graphs, construct list L
of reverse finish order of the vertices in the traversal.
= Node is finished when traversal leaves it permanently.

4 Do another DFS_Sweep on GR, (G with edges
reversed), with the following modification: in
DFS_Sweep outer loop, start DFS calls on vertices
according to the order in list L.

4 Each spanning tree produced by DFS_Sweep on GR
will contain all nodes from exactly one SCC of G

Directed Graphs DFS 1.3 24

Strongly Connected
Components

Directed Graphs DFS 1.3 25

Strongly Connected
Components

Directed Graphs DFS 1.3 26

SCC Algorithm, more detail

// Phase 1
Run DFS_Sweep on G, returning a list L of nodes in reverse
finish order. Done by adding vertex v to the front of L after
traversal on v is finished in DFS_Sweep.

// Phase 2a
Construct GR from G by copying the vertices, and then adding
the reverse of every edge from G to GR.

// Phase 2b
Do a modified DFS_Sweep traversal on GR, where list L is used
to order the DFS calls. Each DFS call labels vertices traversed
with a different SCC number.

// Final Phase:
Label vertices and edges of G.
Directed Graphs DFS 1.3 27

'DFS Phase 1

Construct list L
Similar to topological sort

*

Algorithm SCCIDFS_Sweep(G)
Input dag G
Output list L of vertices of G in
reverse finish order.
L < empty list
for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v)= UNEXPLORED
SCCIDFS(G, v)

O(n+m) time.

Algorithm SCCIDFS(G, v)
Input graph G and a start vertex v of G
Output vertices of G in the connected
component of v added to L,
according to reverse finish order

setLabel(v, VISITED)
for all ¢ € G.outlncidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = U XPLORED
setLabel(e, DISCOVERY)
SCCIDFS(G, w)
else

{e is a forward or cross edge}
L.insertFirst(v)

Directed Graphs DFS 1.3 28

DFS Phase 2b

) '0 Similar to Connected
Components

Algorithm SCC2bDFS_Sweep(GR,L)
Input dag G®, list L
Output Labeling of vertices in
G® by scc component number
sceNum«1
for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ e G.edges()
setLabel(e, UNEXPLORED)
forall v e L, {traverse L in order}
if getLabel(v)= UNEXPLORED
SCC2bDFS(G, v, sccNum)
sccNum++

Algorithm SCC2bDFS(G®, v, sccNum)
Input graph G* and a start vertex v
Output vertices of G* in the connected

component of v labeled by
sccNum
setLabel(v, VISITED)
Label v with sceNum
for all ¢ € G.outlIncidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
SCC2bDFS(G, w)
else
{e is a forward or cross edge}

O(nFm) tme.

Directed Graphs DFS 1.3 29

Correctness of SCC algorithm

4 Lemma 1: In terms of vertices, SCC'’s of G are the
same as the SCC’s of GR.

4 Lemma 2: For graph G, let F be a forest generated by
DFS_Sweep on G. Let S be a tree of F. Then S
contains one or more complete SCC’s of G. (No
partial SCC’s).

Lemma 3a: Let F be the forest generated by SCC
phase 2b, and S be a spanning tree in F. Let x be the
root of S, and v be a descendent of x. Then there is
a path from v to x in GR.

4 Lemma 3b: Let S be as in Lemma 3a. S combined
with other edges in GR form a strongly connected
subgraph of GR.

Directed Graphs DFS 1.3 30

Breadth-First Search

Directed Graphs DFS 1.3 31

Outline and Reading

Breadth-first search (§6.3.3)
= Algorithm
= Example
= Properties
= Analysis
= Applications
@ DFS vs. BFS (§6.3.3)
= Comparison of applications
= Comparison of edge labels

Directed Graphs DFS 1.3 32

Breadth-First Search

Breadth-first search (BFS) is
= general graph traversal technique
= Visits all the vertices and edges
= Wwith n vertices and m edges takes O(n + m) time
= Like searching a binary tree level by level
A BFS can
= Determine whether G is connected
Compute the connected components of G
Compute a spanning forest of G

Find and report a path with the minimum number of edges
between two given vertices
Find a simple cycle, if there is one

Directed Graphs DFS 1.3 3

'Example

(® unexplored vertex
@ visited vertex
—— unexplored edge
— discovery edge
- —=» cross edge

Example (cont.)

'BFS Algorithm

The algorithm uses a
queue to keep track of
vertices

Algorithm BFS_Sweep(G)
Input graph G
Output labeling of the edges
and the vertices of G
for all u e G.vertices()
setLabel(u, UNEXPLORED)

Algorithm BFS(G, s)
0 < new empty queue
Q.enqueue(s)
setLabel(s, VISITED)
while —Q.isEmpty()
v« Q.dequeue()
for all ¢ € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)

setLabel(w, VISITED)
Q.enqueue(w)

else
setLabel(e, CROSS)

for all ¢ € G.edges()
setLabel(e, UNEXPLORED)

for all v € G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

Directed Graphs DFS 1.3 37

Properties

Notation

G,: connected component of s
L;: nodes at depth i in BFS tree.

Property 1 N W
BFS(G, s) visits all the vertices and
edges of G, e G
Property 2

The discovery edges labeled by
BFS(G, s) form a spanning tree 7,
of G,; T, called BFS tree
Property 3
For each vertex vin L,
The path of T, from sto v has i
edges
Every path from s to vin G, has at
least i edges Directed Graphs DFS 1.3 38

“Analysis

4 Setting/getting a vertex/edge label takes O(1) time
4 Each vertex is labeled twice
= once as UNEXPLORED
= once as VISITED
% Each edge is labeled twice
= once as UNEXPLORED
= once as DISCOVERY or CROSS
% Each vertex is inserted once into Q
4 Inner loop of BFS runs in O(deg(v)) time
BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

= Recall that X, deg(v) = 2m

Directed Graphs DFS 1.3 39

Applications

Can specialize the BFS traversal of a graph G
to solve the following problems in O(n + m)
time

= Compute the connected components of G
= Compute a spanning forest of G

= Find a simple cycle in G, or report that G is a
forest

= Given two vertices of G, find a minimum length
path in G (if it exists)

Directed Graphs DFS 1.3 40

‘DFS vs. BFS

Applications DFS | BFS
Spanning forest, connected N y
components, paths, cycles

Shortest paths N
Topological sort, Biconnected N
components, SCC

o
%

® ®
DFS

Directed Graphs DFS 1.3 41

'DFS vs. BFS (cont.)

On undirected graphs

Back edge (v,w) Cross edge (v,w)
= wis an ancestor of v in = wis in the same level as
the tree of discovery v or in the next level in
edges the tree of discovery

Directed Graphs DFS 1.3 42

