
Shortest Path 2/27/2003 6:40 PM

1

Directed Graphs DFS 1.3 1

DFS on Directed Graphs
JFK

BOS

MIA

ORD

LAX
DFW

SFO

Directed Graphs DFS 1.3 2

Outline and Reading (§6.4)

Reachability (§6.4.1)
Directed DFS
Strong connectivity

Directed Acyclic Graphs (DAG’s)
(§6.4.4)

Topological Sorting

Directed Graphs DFS 1.3 3

Digraphs

A digraph is a graph
whose edges are all
directed

Short for “directed graph”

Applications
one-way streets
flights
task scheduling A

C

E

B

D

Shortest Path 2/27/2003 6:40 PM

2

Directed Graphs DFS 1.3 4

Digraph Application
Scheduling: edge (a,b) means task a must be
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

Directed Graphs DFS 1.3 5

Directed DFS
DFS on digraphs traverses
edges only along their proper
direction
In the directed DFS
algorithm, we have four
types of edges

discovery edges
back edges
forward edges
cross edges

A directed DFS starting at a
vertex s determines the
vertices reachable from s

A

C

E

B

D

Directed Graphs DFS 1.3 6

Directed DFS example

DFS_Sweep starts at A, then B,…
tree, back, cross

C

A

E

B

D

F
C

A

E D

C

A

B

D

F

Shortest Path 2/27/2003 6:40 PM

3

Directed Graphs DFS 1.3 7

DAGs and Topological Ordering
A directed acyclic graph (DAG) is a
digraph that has no directed cycles
A topological ordering of a digraph
is a numbering

v1 , …, vn

of the vertices such that for every
edge (vi , vj), we have i < j
Example: in a task scheduling
digraph, a topological ordering a
task sequence that satisfies the
precedence constraints

Theorem
A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

Directed Graphs DFS 1.3 8

write c.s. program

play

Topological Sorting
Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

make cookies
for professors

Directed Graphs DFS 1.3 9

Note: This algorithm is different than the one in
Goodrich-Tamassia

Running time: O(n + m) [with smart implementation] How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H

Shortest Path 2/27/2003 6:40 PM

4

Directed Graphs DFS 1.3 10

Topological Sorting
Algorithm using DFS

Simulate the algorithm by using
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output a labeling of the vertices of G

in the connected component of v in
topological order

setLabel(v, VISITED)
for all e ∈ G.outIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}
setLabel(e, VISITED)

Label v with topological number n
n ← n - 1

Algorithm topoDFS_Sweep(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

Directed Graphs DFS 1.3 11

Topological Sorting Example

Directed Graphs DFS 1.3 12

Topological Sorting Example

9

Shortest Path 2/27/2003 6:40 PM

5

Directed Graphs DFS 1.3 13

Topological Sorting Example

8

9

Directed Graphs DFS 1.3 14

Topological Sorting Example

7
8

9

Directed Graphs DFS 1.3 15

Topological Sorting Example

7
8

6

9

Shortest Path 2/27/2003 6:40 PM

6

Directed Graphs DFS 1.3 16

Topological Sorting Example

7
8

56

9

Directed Graphs DFS 1.3 17

Topological Sorting Example

7

4

8

56

9

Directed Graphs DFS 1.3 18

Topological Sorting Example

7

4

8

56

3

9

Shortest Path 2/27/2003 6:40 PM

7

Directed Graphs DFS 1.3 19

Topological Sorting Example
2

7

4

8

56

3

9

Directed Graphs DFS 1.3 20

Topological Sorting Example
2

7

4

8

56

1

3

9

Directed Graphs DFS 1.3 21

Strong Connectivity
Each vertex can reach all other vertices

a

d

c

b

e

f

g

Shortest Path 2/27/2003 6:40 PM

8

Directed Graphs DFS 1.3 22

Pick a vertex v in G.
Perform a DFS from v in G.

If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.

If there’s a w not visited, print “no”.
Else, print “yes”.

Running time: O(n+m).

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

Directed Graphs DFS 1.3 23

Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph
Can be computed in O(n+m) time using DFS

Strongly Connected
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

Directed Graphs DFS 1.3 24

SCC algorithm

Using DFS_Sweep for directed graphs, construct list L
of reverse finish order of the vertices in the traversal.

Node is finished when traversal leaves it permanently.

Do another DFS_Sweep on GR, (G with edges
reversed), with the following modification: in
DFS_Sweep outer loop, start DFS calls on vertices
according to the order in list L.
Each spanning tree produced by DFS_Sweep on GR

will contain all nodes from exactly one SCC of G

Shortest Path 2/27/2003 6:40 PM

9

Directed Graphs DFS 1.3 25

Strongly Connected
Components

Directed Graphs DFS 1.3 26

Strongly Connected
Components

Directed Graphs DFS 1.3 27

SCC Algorithm, more detail
// Phase 1
Run DFS_Sweep on G, returning a list L of nodes in reverse
finish order. Done by adding vertex v to the front of L after
traversal on v is finished in DFS_Sweep.

// Phase 2a
Construct GR from G by copying the vertices, and then adding
the reverse of every edge from G to GR.

// Phase 2b
Do a modified DFS_Sweep traversal on GR, where list L is used
to order the DFS calls. Each DFS call labels vertices traversed
with a different SCC number.

// Final Phase:
Label vertices and edges of G.

Shortest Path 2/27/2003 6:40 PM

10

Directed Graphs DFS 1.3 28

DFS Phase 1
Construct list L
Similar to topological sort

O(n+m) time.

Algorithm SCC1DFS(G, v)
Input graph G and a start vertex v of G
Output vertices of G in the connected

component of v added to L,
according to reverse finish order

setLabel(v, VISITED)
for all e ∈ G.outIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
SCC1DFS(G, w)

else
{e is a forward or cross edge}

L.insertFirst(v)

Algorithm SCC1DFS_Sweep(G)
Input dag G
Output list L of vertices of G in

reverse finish order.
L ← empty list
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
SCC1DFS(G, v)

Directed Graphs DFS 1.3 29

DFS Phase 2b
Similar to Connected
Components

O(n+m) time.

Algorithm SCC2bDFS(GR, v, sccNum)
Input graph GR and a start vertex v
Output vertices of GR in the connected

component of v labeled by
sccNum

setLabel(v, VISITED)
Label v with sccNum
for all e ∈ G.outIncidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
SCC2bDFS(G, w)

else
{e is a forward or cross edge}

Algorithm SCC2bDFS_Sweep(GR,L)
Input dag GR, list L
Output Labeling of vertices in
GR by scc component number

sccNum←1
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ L, {traverse L in order}

if getLabel(v) = UNEXPLORED
SCC2bDFS(G, v, sccNum)
sccNum++

Directed Graphs DFS 1.3 30

Correctness of SCC algorithm

Lemma 1: In terms of vertices, SCC’s of G are the
same as the SCC’s of GR.
Lemma 2: For graph G, let F be a forest generated by
DFS_Sweep on G. Let S be a tree of F. Then S
contains one or more complete SCC’s of G. (No
partial SCC’s).
Lemma 3a: Let F be the forest generated by SCC
phase 2b, and S be a spanning tree in F. Let x be the
root of S, and v be a descendent of x. Then there is
a path from v to x in GR.
Lemma 3b: Let S be as in Lemma 3a. S combined
with other edges in GR form a strongly connected
subgraph of GR.

Shortest Path 2/27/2003 6:40 PM

11

Directed Graphs DFS 1.3 31

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Directed Graphs DFS 1.3 32

Outline and Reading
Breadth-first search (§6.3.3)

Algorithm
Example
Properties
Analysis
Applications

DFS vs. BFS (§6.3.3)
Comparison of applications
Comparison of edge labels

Directed Graphs DFS 1.3 33

Breadth-First Search

Breadth-first search (BFS) is
general graph traversal technique
Visits all the vertices and edges
with n vertices and m edges takes O(n + m) time
Like searching a binary tree level by level

A BFS can
Determine whether G is connected
Compute the connected components of G
Compute a spanning forest of G
Find and report a path with the minimum number of edges
between two given vertices
Find a simple cycle, if there is one

Shortest Path 2/27/2003 6:40 PM

12

Directed Graphs DFS 1.3 34

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Directed Graphs DFS 1.3 35

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Directed Graphs DFS 1.3 36

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Shortest Path 2/27/2003 6:40 PM

13

Directed Graphs DFS 1.3 37

BFS Algorithm
The algorithm uses a
queue to keep track of
vertices

Algorithm BFS(G, s)
Q ← new empty queue
Q.enqueue(s)
setLabel(s, VISITED)
while ¬Q.isEmpty()

v ← Q.dequeue()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Q.enqueue(w)

else
setLabel(e, CROSS)

Algorithm BFS_Sweep(G)
Input graph G
Output labeling of the edges

and the vertices of G
for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

Directed Graphs DFS 1.3 38

Properties
Notation

Gs: connected component of s
Li: nodes at depth i in BFS tree.

Property 1
BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts
of Gs; Ts called BFS tree

Property 3
For each vertex v in Li

The path of Ts from s to v has i
edges
Every path from s to v in Gs has at
least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

Directed Graphs DFS 1.3 39

Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or CROSS

Each vertex is inserted once into Q
Inner loop of BFS runs in O(deg(v)) time
BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

Recall that Σv deg(v) = 2m

Shortest Path 2/27/2003 6:40 PM

14

Directed Graphs DFS 1.3 40

Applications
Can specialize the BFS traversal of a graph G
to solve the following problems in O(n + m)
time

Compute the connected components of G
Compute a spanning forest of G
Find a simple cycle in G, or report that G is a
forest
Given two vertices of G, find a minimum length
path in G (if it exists)

Directed Graphs DFS 1.3 41

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

√Topological sort, Biconnected
components, SCC

√Shortest paths

√√Spanning forest, connected
components, paths, cycles

BFSDFSApplications

Directed Graphs DFS 1.3 42

DFS vs. BFS (cont.)

Back edge (v,w)
w is an ancestor of v in
the tree of discovery
edges

Cross edge (v,w)
w is in the same level as
v or in the next level in
the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

On undirected graphs

