Dynamic Programming

Outline and Reading

- Matrix Chain-Product (§5.3.1)
- The General Technique (§5.3.2)
- 0-1 Knapsack Problem (§5.3.3)

Computing Fibonacci

- Dynamic Programming is a general algorithm design paradigm:
- Recursive solution:
- int fib(int x)
if $(x=0)$ return 0 ;
- Iteratively solves small subproblems which are combined to solve overall problem.
- Fibonacci numbers defined
- $\mathrm{F}_{0}=0$
else if $(x=1)$ return 1 ; else return fib($x-1$) + fib(x-2);
- $F_{1}=1$

Dynamic Programming Solution:

- f[0]=0; f[1]=1;
for $\mathrm{i} \leftarrow 2$ to x do
$\mathrm{f}[i] \leftarrow \mathrm{f}[\mathrm{i}-1]+\mathrm{f}[\mathrm{i}-2] ;$
- $F_{n}=F_{n-1}+F_{n-2}$ for $n>1$
return $\mathrm{f}[\mathrm{x}]$; \qquad

Dynamic Programming revealed

Break problem into subproblems

- (Hardest part!)
- subproblems are shared
- optimal subproblem solution needs to help solve overall problem. (subproblem optimality)
- Compute solutions to small subproblems
- Store solutions in array A.
- Combine already computed solutions into solutions for larger subproblems
- Solutions Array A is iteratively filled
(Optional: reduce space needed by reusing array)

Reducing Space for

 Computing Fibonacci- store only previous 2 values to compute next value
- int fib(x)
if $(x=0)$ return 0 ;
else if ($\mathrm{x}=1$) return $1_{\text {; }}$
else
int last $\leftarrow 1$; nextlast $\leftarrow 0$;
for $\mathrm{i} \leftarrow 2$ to x do
temp \leftarrow last + nextlast;
nextlast \leftarrow last;
last \leftarrow temp;
return temp; \qquad
\qquad

Matrix Chain-Products

Review: Matrix Multiplication. \qquad

- $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{A}_{\boldsymbol{B}}$
- A is $d \times e$ and B is $e \times f$ $C[i, j]=\sum_{k=0}^{e-1} A[i, k]^{*} B[k, j]$
- $\boldsymbol{O}($ def $)$ time (def multiplications)

Dynamic Programming version 1.2

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A=A_{0}{ }^{*} A_{1}{ }^{*} \ldots{ }^{*} A_{n-1}$
- A_{i} is $d_{i} \times d_{i+1}$
- Problem: How to parenthesize? [for minimizing ops]
- Example
- B is 3×100
- C is 100×5
- D is 5×5
- (B*C)*D takes $1500+75=1575$ ops
- $B^{*}\left(C^{*} D\right)$ takes $1500+2500=4000$ ops \qquad
\qquad

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize $A=A_{0}{ }^{*} A_{1} * \ldots * A_{n-1}$
- Calculate number of ops for each one

- Pick the one that is best
- Running time:
- The number of paranethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4 .
- This is a terrible algorithm!

A Greedy Approach

- Idea \#1: repeatedly select the product that \qquad uses (up) the most operations.
Counter-example: \qquad
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- Greedy idea \#1 gives ($\mathrm{A} * \mathrm{~B})^{*}\left(\mathrm{C}^{*} \mathrm{D}\right)$, which takes \qquad $500+1000+500=2000$ ops
- $\mathrm{A}^{*}\left(\left(\mathrm{~B}^{*} \mathrm{C}\right) * \mathrm{D}\right)$ takes $500+250+250=1000 \mathrm{ops}$ \qquad

Another Greedy Approach

Idea \#2: repeatedly select the product that uses the fewest operations.
Counter-example:

- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99
- Greedy idea \#2 gives A*((B*C)*D)), which takes $109989+9900+108900=228789$ ops
- $(\mathrm{A} * \mathrm{~B})^{*}(\mathrm{C} * \mathrm{D})$ takes $9999+89991+89100=189090$ ops
- The greedy approach is not giving us the
optimal value. ${ }_{\text {Dynamic Programming version } 1.2}$ \qquad

A "Recursive" Approach

- Define subproblems:
- Find the best parenthesization of $A_{i}{ }^{*} A_{i+1}{ }^{*} \ldots{ }^{*} A_{j}$.
- Let $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $\mathrm{N}_{0, \mathrm{n}-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index $i:\left(A_{0} * \ldots * A_{i}\right) *\left(A_{i+1} * \ldots * A_{n-1}\right)$.
- Then the optimal solution $N_{0, n-1}$ is the sum of two optimal subproblems, $N_{0, i}$ and $N_{i+1, n-1}$ plus the time for the last multiply.
- If subproblems were not optimal, neither is global solution. \qquad
\qquad

A Characterizing
 Equation

- Define global optimal in terms of optimal subproblems, by checking all possible locations for final multiply.
- Recall that A_{i} is a $d_{i} \times d_{i+1}$ dimensional matrix.
- So, a characterizing equation for $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

* Note that subproblems are not independent--the subproblems overlap (are shared)

A Dynamic Programming Algorithm

Construct optimal subproblems "bottom-up."

- $N_{i, i}$'s are easy, so start with them
Then do length 2,3, \ldots subproblems, and so on.
- Array $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ stores solutions
- Running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Algorithm matrixChain(S):

Input: sequence \boldsymbol{S} of \boldsymbol{n} matrices to be multiplied Output: number of operations in an optimal paranthesization of S
for $i \leftarrow 1$ to $n-1$ do
$N_{i, i} \leftarrow 0$
for $b \leftarrow 1$ to $n-1$ do
for $i \leftarrow 0$ to $n-b-1$ do
$j \leftarrow i+b$
$N_{i, j} \leftarrow+$ infinity
for $k \leftarrow \mathrm{i}$ to $j-1$ do
$N_{i, j} \leftarrow \min \left\{N_{i, j}, N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}$

Dynamic Programming version 1.2

A Dynamic Programming Algorithm Visualization

$N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}$
The bottom-up
construction fills in the N array by diagonals

- $N_{i, j}$ gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes $\mathrm{O}(\mathrm{n})$ time.
Total run time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Getting actual parenthesization can be done by remembering " k " for each N entry

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, I, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

The 0/1 Knapsack Problem

Given: A set S of n items, with each item i having

- b_{i} - a positive benefit
- w_{i} - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

- If we are not allowed to take fractional amounts, then this is the $\mathbf{0 / 1} \mathbf{k n a p s a c k}$ problem.
- In this case, we let T denote the set of items we take
- Objective: maximize $\sum_{i \in T} b_{i}$
- Constraint: $\quad \sum_{\substack{i \in T \\ \text { Dynamic Programmin }}} w_{i} \leq W$

Dynamic Programming version 1.2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

Given: A set S of n items, with each item i having

- b_{i} - a positive benefit
- w_{i} - a positive weight
- Goal: Choose items with maximum total benefit but with

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A 0/1 Knapsack Algorithm, First Attempt

- S_{k} : Set of items numbered 1 to k . \qquad
- Define $B[k]=$ best selection from S_{k}.
- Problem: does not have subproblem optimality:
- Consider $\mathrm{S}=\{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ benefit-weight pairs \qquad

Best for S_{4} :

\qquad
\qquad
\qquad
\qquad
\qquad

A 0/1 Knapsack Algorithm, Second Attempt

- S_{k} : Set of items numbered 1 to k.
- Define $B[k, w]=$ best selection from S_{k} with weight exactly equal to w
Good news: this does have subproblem optimality:
$B[k, w]=\left\{\begin{array}{cc}B[k-1, w] & \text { if } w_{k}>w \\ \max \left\{B[k-1, w], B\left[k-1, w-w_{k}\right]+b_{k}\right\} & \text { else }\end{array}\right.$
I.e., best subset of S_{k} with weight exactly w is either the best subset of $S_{k-1} w /$ weight w or the best subset of $\mathrm{S}_{\mathrm{k}-1} \mathrm{w} /$ weight $\mathrm{w}-\mathrm{w}_{\mathrm{k}}$ plus item k .

The 0/1 Knapsack Algorithm

- Recall definition of $\mathrm{B}[\mathrm{k}, \mathrm{w}]$:
$B[k, w]=\left\{\begin{array}{cc}B[k-1, w] & \text { if } w_{k}>w \\ \max \left\{B[k-1, w], B\left[k-1, w-w_{k}\right]+b_{k}\right\} & \text { else }\end{array}\right.$
Since $B[k, w]$ is defined in
Algorithm 01Knapsack(S, \boldsymbol{W}):
Input: set S of items w/ benefit b_{i} terms of $\mathrm{B}[\mathrm{k}-1, *]$, we can reuse the same array
- Running time: O(nW).
- Not a polynomial-time algorithm if W is large
This is a pseudo-polynomial and weight $\boldsymbol{w} ;$ max. weight \boldsymbol{W}
Output: benefit of best subset with
weight at most W
for $w \leftarrow 0$ to W do
$B[w] \leftarrow 0$
for $k \leftarrow 1$ to n do
for $w \leftarrow W$ downto w_{k} do if $B\left[w-w_{k}\right]+b_{k}>B[w]$ then $B[w] \leftarrow B\left[w-w_{k}\right]+b_{k}$
\qquad

Dynamic Programming revealed

- Break problem into subproblems that are
- shared
- have subproblem optimality (optimal subproblem solution helps solve overall problem)
- subproblem optimality means can write recursive realtionship between subproblems!
- Compute solutions to small subproblems
- Store solutions in array A.
- Combine already computed solutions into solutions for larger subproblems
- Solutions Array A is iteratively filled
(Optional: reduce space needed by reusing array)

The 0/1 Knapsack Problem

Given: A set S of n items, with each item i having

- b_{i} - a positive benefit
- w_{i} - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

- If we are not allowed to take fractional amounts, then this is the $\mathbf{0 / 1}$ knapsack problem.
- In this case, we let T denote the set of items we take
- Objective: maximize

- Constraint: $\quad \sum_{\substack{i \in T \\ \text { Dynamic Programmin }}} w_{i} \leq W$

Dynamic Programming version 1.2

Towards the 0/1 Knapsack Algorithm

- Sk: Set of items numbered 1 to $k=\left\{\left(b_{1}, w_{1}\right),\left(b_{2}, w_{2}\right)\right.$, $\left.\ldots,\left(b_{k}, w_{k}\right)\right\}$
- Define $\mathrm{B}[\mathrm{k}, \mathrm{j}]=$ maximum benefit of optimal subset from S_{k} with total weight at most j
- Recursive definition of $\mathrm{B}[\mathrm{k}, \mathrm{j}]$:
$B[k, j]=\left\{\begin{array}{cc}0 & \text { if } k=0 \\ B[k-1, j] & \text { if } w_{k}>j \\ \max \left\{B[k-1, j], B\left[k-1, j-w_{k}\right]+b_{k}\right\} & \text { otherwise }\end{array}\right.$

Towards the 0/1 Knapsack

 Algorithm

Algorithm rec01Knap (S, W) :
$B[k, j]=$ maximum benefit of optimal subset from S_{k} with total weight at most j

- Recursive version of algorithm based on recursive subproblem relationship.
- Not a dynamic programming version.

Input: set S of \boldsymbol{k} items w/ benefit $\boldsymbol{b}_{\boldsymbol{1}}, \boldsymbol{b}_{2}, \ldots$ $\boldsymbol{b}_{k} ;$; weights $w_{l}, w_{2}, \ldots w_{k j}$ and max.
weight \boldsymbol{W} weight \boldsymbol{W}
Output: benefit of best subset with weight at most \boldsymbol{W}
if $\boldsymbol{k}=0$ then $\{S=$ emptyset $\}$ return 0
remove item \mathbf{k} (benefit-weight $\left(\mathrm{b}_{\mathrm{k}}, \mathrm{w}_{\mathrm{k}}\right)$) from \mathbf{S}
if $w_{k}>W$ then \{item \mathbf{k} does not fit\} return reco1Knap(S,W)
return max(rec01Knap(S,W), $\left.\operatorname{rec} 01 K n a p\left(S, W-w_{k}\right)+b_{k}\right)$
Dynamic Programming version 1.2 24
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Towards the 0/1 Knapsack

 Algorithm$B[k, j]=\left\{\begin{array}{cl}0 & \text { if } k=0 \\ B[k-1, j] & \text { if } w_{k}>j \\ \max \left\{B[k-1, j], B\left[k-1, j-w_{k}\right]+b_{k}\right\} & \text { otherwise }\end{array}\right.$

Algorithm rec01Knap (S, W) :
Modified recursive version
that stores subproblem that stores subproblem solutions

- First allocate global array B of size $n+1$ by W
- Then initialize all entries of $B[i, j]$ to -1
- B stores results of recursive calls
- Entries in B are computed when necessary

Input: set S of \boldsymbol{k} items w/ benefit $\boldsymbol{b}_{b}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\boldsymbol{k}}$ weights $w_{l}, w_{2}, \ldots w_{k j}$ and max. weight W
Output: benefit of best subset with
weight at most \boldsymbol{W}
if $k=0$ then return 0
remove item \mathbf{k} (benefit-weight $\left(b_{k}, w_{k}\right)$) from \mathbf{S} if $B[k-1, W]=-1$ then $B[k-1, W]=\operatorname{rec} 01 K n a p(S, W)$ if $w_{k}>W$ then
return $B[k-1, W]$
if $B\left[k-1, W-w_{k}\right]=-1$ then
$\boldsymbol{B}\left[\boldsymbol{k}-1, \boldsymbol{W}-w_{k}\right]=\operatorname{rec} 01 \operatorname{Knap}\left(S, W-w_{k}\right)$
return $\max \left(\boldsymbol{B}[\boldsymbol{k}-1, \boldsymbol{W}], \boldsymbol{B}\left[\boldsymbol{k}-1, \boldsymbol{W}-w_{k}\right]+\boldsymbol{b}_{\boldsymbol{k}}\right)$
This is considered a dynamic programming version.

Dynamic Programming version 1.2

The 0/1 Knapsack Algorithm- Iterative

The 0/1 Knapsack Algorithm- Iterative
$B[k, j]=\left\{\begin{array}{cl}0 & \text { if } k=0 \\ B[k-1, j] & \text { if } w_{k}>j \\ \max \left\{B[k-1, j], B\left[k-1, j-w_{k}\right]+b_{k}\right\} & \text { otherwise }\end{array}\right.$

Algorithm 01Knapsack(S, W):
Input: set S of \boldsymbol{n} items w/ benefit b and weight w_{i}; max. weight W space

- Keep track of one row at a time

Output: benefit of best subset with weight at most \boldsymbol{W}
for $w \leftarrow 0$ to W do \{base case\} $B[\theta, w] \leftarrow 0$

- Overwrite results from previous row as new values computed
for $k \leftarrow 1$ to n do for $j \leftarrow W$ downto 1 do
if $\boldsymbol{w}_{\boldsymbol{k}}>\boldsymbol{j}$ then
$B[\mathbf{k}, j] \leftarrow B[k+j]$ downto 1) so that the next row ($\mathrm{B}[\mathrm{k}, *]$) uses results from else
$B|\underline{-} j| \leftarrow \max (B \mid \leqslant-1, j)$, Simplify this to (B[k-1,*])
Simplify this to get version in
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The 0/1 Knapsack Algorithm- Iterative
$B[k, j]=\left\{\begin{array}{cc}0 & \text { if } k=0 \\ B[k-1, j] & \text { if } w_{k}>j \\ \max \left\{B[k-1, j], B\left[k-1, j-w_{k}\right]+b_{k}\right\} & \text { otherwise }\end{array}\right.$

Algorithm 01Knapsack(S, W):

Not necessary to use all the space

- Keep track of one row at a time
- Overwrite results from previous row as new values computed
- Must compute right to left (W downto 1) so that the next row ($B[k, *]$) uses results from the previous row ($\mathrm{B}[\mathrm{k}-1, *]$).

Input: set \boldsymbol{S} of \boldsymbol{n} items w/ benefit b and weight w_{i}; max. weight W
Output: benefit of best subset with weight at most W
for $w \leftarrow 0$ to W do \{base case\} $B[w] \leftarrow 0$
for $k \leftarrow 1$ to n do for $j \leftarrow W$ downto 1 do
if $w_{k}>j$ then
$B[j] \leftarrow B[j]$
else
$B[j] \leftarrow \max (B[j]$,
Simplify this to get version in book.

The 0/1 Knapsack Algorithm

Algorithm 01Knapsack(S, W): Input: set \boldsymbol{S} of \boldsymbol{n} items w/ benefit \boldsymbol{b}_{i} and weight w_{i}; max. weight \boldsymbol{W}
The book version:
from one row to the next,
then no need to assign same value.

Output: benefit of best subset with
weight at most \boldsymbol{W}
for $w \leftarrow 0$ to W do
$B[w] \leftarrow 0$
for $k \leftarrow 1$ to n do for $w \leftarrow W$ downto w_{k} do if $B\left[w-w_{k}\right]+b_{k}>B[w]$ then $B[w] \leftarrow B\left[w-w_{k}\right]+b_{k}$

Running time: O(nW).

- Not a polynomial-time algorithm if W is large
This is a pseudo-polynomial time algorithm
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

