Dynamic Programming version 1.2 1

Outline and Reading

Matrix Chain-Product (8§5.3.1)
The General Technique (§5.3.2)
0-1 Knapsack Problem (8§5.3.3)

Dynamic Programming version 1.2 2

Computing Fibonacci

Dynamic Programming # Recursive solution:
is a general algorithm = int fib(int x)
design paradigm: if (x=0) return 0;
» Iteratively solves small elseif (x=1) return 1;
subproblems which are else return fib(x-1) +

combined to solve overall fib(x-2);
problem.
4 Fibonacci numbers # Dynamic Programming
defined Solution:
= Fy= = f[0]=0; f[1]=1;
» F=1 for i <2 to x do

f[i] « f[i-1] + f[i-2];

= F,=F +F,forn>1 return f[xJ;

Dynamic Programming version 1.2 3

Dynamic Programming
‘revealed

| @ Break problem into subproblems
(Hardest part!)
subproblems are shared

optimal subproblem solution needs to help solve
overall problem. (subproblem optimality)

Compute solutions to small subproblems
Store solutions in array A.

Combine already computed solutions into
solutions for larger subproblems

4 Solutions Array A is iteratively filled

(Optional: reduce space needed by reusing
array)

Dynamic Programming version 1.2 4

Reducing Space for
Computing Fibonacci

& store only previous 2 values to compute next
value
= int fib(x)
if (x=0) return 0;
else if (x=1) return 1;
else
int last «<— 1; nextlast <— 0;
for i< 2toxdo
temp < last + nextlast;
nextlast < last;
last «<— temp;
return temp;

Dynamic Programming version 1.2 5

'Matrix Chain-Products "‘i’i‘

4 Review: Matrix Multiplication.

s C=A*B
n Aisdxeand Bise x f f
e—1 (_H
Cli, j1=) Ali,k1* Blk,] B
k=0

n O(def) time (def multiplications) e

==

Dynamic Programming version 1.2 f 6

'Matrix Chain-Products "‘i’i‘

Matrix Chain-Product:
= Compute A=A*A*.. %A,
= Ajisdix dyy
= Problem: How to parenthesize? [for
minimizing ops]
4 Example
= Bis 3 x 100
= Cis 100 x 5
n Dis5x5
= (B*C)*D takes 1500 + 75 = 1575 ops
= B*(C*D) takes 1500 + 2500 = 4000 ops

Dynamic Programming version 1.2 7

An Enumeration Approach

| @ Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=AFAK. KA (V8
= Calculate number of ops for each one
= Pick the one that is best
Running time:
= The number of paranethesizations is equal
to the number of binary trees with n nodes
= This is exponential!

= It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!

Dynamic Programming version 1.2 8

;

A Greedy Approach

Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:
» Ais10 x5
= Bis5x 10
» Cis10 x5
» Dis5x 10
= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
A*((B*C)*D) takes 500+250+250 = 1000 ops

Dynamic Programming version 1.2 9

@ Idea #2: repeatedly select the product that uses

the fewest operations.
Counter-example:

= Ais 101 x 11

= Bis11 x 9

= Cis9 x 100

= Dis 100 x 99

= Greedy idea #2 gives A*((B*C)*D)), which takes

109989+9900+108900=228789 ops

= (A*B)*(C*D) takes 9999+89991+89100=189090 ops
4 The greedy approach is not giving us the
optimal value

'Dynamlc Programming version 1.2 10

A “Recursive” Approach

% Define subproblems:
= Find the best parenthesization of A*A, *.. *A;.

= Let N;; denote the number of operations done by this
subproblem.

= The optimal solution for the whole problem is Ny ;.

4 Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression
tree) for the optimal solution.
Say, the final multiply is at index i: (Ag*... *A)*(A *.. ¥A,).
Then the optimal solution Ny .., is the sum of two optimal
subproblems, Ny; and Ny, ., plus the time for the last multiply.
If subproblems were not optimal, neither is global solution.

Dynamic Programming version 1.2 11

A Characterizing
Equation

Define global optimal in terms of optimal subproblems,
by checking all possible locations for final multiply.
= Recall that A is a d, x d,,, dimensional matrix.
= So, a characterizing equation for N;; is the following:

N,

i =

min{N, + N,

i<k<j

+ didk+1dj+1}

+1,j

Note that subproblems are not independent--the
subproblems overlap (are shared)

Dynamic Programming version 1.2 12

A Dynamic Programming
“Algorithm

| Construct optimal

subproblems Algorithm matrixChain(S):

“bottom-up.” Input: sequence S of n matrices to be multiplied
N, /s are easy, so Output: number of operations in an optimal

Stért with them paranthesization of §
#| Then do length fori <« 1ton-Ido

2,3,... subproblems, Ny« 0

and so on. for b < 1 to n-1 do
Array N;;stores for i < 0 to n-b-1 do

solutions jeith
Running time: O(n?) N, « +infinity

for k < itoj-I do
Nij = min{N;; . Ny +Njoy j i dpsy dig}

Dynamic Programming version 1.2 13

A Dynamic Programming
Algorithm Visualization

The bottom-up NI,_/ EE}{NM + Nk+l,j + dldk+|dj+|} g
construction fillsinthe N|o 1 2 it
N array by diagonals 0 . —
N,; gets values from 1
pervious entries in i-th
row and j-th column i ||

Filling in each entry in
the N table takes O(n)
time.

4 Total run time: O(n%)

@ Getting actual n-1
parenthesization can be
done by remembering
“k” for each N entry

Dynamic Programming version 1.2 14

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming version 1.2 15

NN

e
S

‘The 0/1 Knapsack Problem ; =

Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
4 Goal: Choose items with maximum total benefit but with
weight at most W.
4 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Z b[.
ieT

= Constraint: ZW,. <w

iel
Dynamic Programming version 1.2 16
@58
Example S

A}
(<

Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
@ Goal: Choose items with maximum total benefit but with

weight at most W.
Iy “knapsack”
. Solution:
Items: [\/:L ©5(2in)
1 2 3 a *3(2in)
o1 (4i
Weight: 4in 2in 2in 6in 2in] n
Benefit: $20 $3 6 $25 $80 9in
Dynamic Programming version 1.2 17

A 0/1 Knapsack Algorithm,
First Attempt

| # S,: Set of items numbered 1 to k.

4 Define B[k] = best selection from S,.

% Problem: does not have subproblem optimality:
= Consider S={(3,2),(5,4),(8,5),(4,3),(10,9)} benefit-weight pairs

Best for S,: || G4l | || I
Best for Sg: [I

Dynamic Programming version 1.2 18

A 0/1 Knapsack Algorithm,

(G
Second Attempt e
. N N
1 #S,: Set of items numbered 1 to k. w

4@ Define B[k,w] = best selection from S, with
weight exactly equal to w

Good news: this does have subproblem
optimality:

{ Blk—1,w] if w, > w

Blk,w]=

max {B[k —1,w], Bk —1,w—w,]+b,} else

L.e., best subset of S, with weight exactly w is
either the best subset of S, ; w/ weight w or the
best subset of S;_; w/ weight w-w, plus item k.

Dynamic Programming version 1.2 19

|

The 0/1 Knapsack
Algorithm

|Recall definition of B[k,w]:
{ Blk-1,w] if w,>w
Blk,w]=
max {B[k -1, w], Blk-1,w-w.]+b} else

:T’Eg ~
IS
RN

Algorithm 01Knapsack(S, W):
Input: set S of items w/ benefit b;

4|Since B[k,w] is defined in

terms of B[k'l,*], we can and weight w; max. weight W
reuse the same array Output: benefit of best subset with
4 Running time: O(nW). weight at most

N for w < 0 to W do
Not a polynomial-time Blw] « 0

alg.or'lthm if W is large . for k < 1 to 1 do
This is a pseudo-polynomial for w < ¥ downto w, do
time algorithm if B[w-w,]+b, > B[] then
Blw| < Blw-w,]+b,

Dynamic Programming version 1.2 20

Dynamic Programming
‘revealed

" # Break problem into subproblems that are

= shared
have subproblem optimality (optimal subproblem
solution helps solve overall problem)
subproblem optimality means can write recursive
realtionship between subproblems!

Compute solutions to small subproblems

Store solutions in array A.

Combine already computed solutions into
solutions for larger subproblems

Solutions Array A is iteratively filled

(Optional: reduce space needed by reusing
array)

Dynamic Programming version 1.2 21

‘The 0/1 Knapsack Problem [@wf

&l

% Given: Aset Sof n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
4 Goal: Choose items with maximum total benefit but with
weight at most W.
4 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Zbi
ieT
» Constraint: ZW,. <W
ieT

Dynamic Programming version 1.2

Towards the 0/1 Knapsack @F@ ~ /A
. -

Algorithm i%ﬁ
. 24

@ S,: Set of items numbered 1 to k = {(b;,w,), (b,,w,);

wer (D W)}

| Define B[k,j] = maximum benefit of optimal subset

from S, with total weight at most j

Recursive definition of B[k,j]:

0 if k=0

Blk, j1= Blk—1,/] ifw, >
max {B[k -1, j], Blk—1,j—w,]+b,} otherwise

—
B

Dynamic Programming version 1.2

Towards the 0/1 Knapsack
Algorithm =

0 ifk=0
Blk, j]= Blk-1,/] if w, > j
max{B[k—1, /], Blk—1,j-w/]+b.} otherwise
Algorithm rec01Knap(S, W):
& B[k]] = maximum beneﬁt Input: set S of & items w/ benefit b, b,, ...
bt b, ights wy, wy, ... w;; and max.
of optimal subset from S, wataht W
with total Weight at mostj Output: benefit of best subset with
: : weight at most W
Recursive version of £ 4=0 then {8 = emptyset}
algorithm based on return 0
recursive subproblem remove item k (benefit-weight (b,.w,))
relationship. from S
Not a dynamic if w, > 1 then {item k does not fit}
programming version. return rec0lKnap(S,W)
return max(rec01Knap(S,W),
rec0l1Knap(S,W-w,) +b,)
Dynamic Programming version 1.2 24

Towards the 0/1 Knapsack

“Algorithm

=

0 if k=0
Blk, j1= Blk-1,] if w, > j
max{B[k -1, /], Blk—1,j-w,/]+b,} otherwise
4 |Modified recursive version | Algorithm rec01Knap(S, W):

that stores subproblem
solutions

= First allocate global array
B of size n+1 by W
Then initialize all entries
of B[i,j]to -1
B stores results of
recursive calls
Entries in B are
computed when
necessary
% This is considered a

Input: sct § of & items w/ benefit b, b,, .
weights wj, wy, ...

w,; and max. weight Hk
Output: benefit of best subset with
weight at most W
if k=0 then return 0
remove item k (benefit-weight (b,,w,)) from S
if B[k-1, W]= -1 then B[k-1,W]=rec01Knap(S,W)
if w, > I then
return Blk-1, W]
if B[k-1, W-,]=—1 then
Blk-1,W - w,|=rec0IKnap(S,W -w,)
return max(B[k-1, W], B[k-1,W - w]+b,)

dynamic programming
version.

Dynamic Programming version 1.2

25

The 0/1 Knapsack

Algorithm- Ite

Blk, j1= Bk~

el

rative

ifk=0

1/] ifw, > j

max {B[k—1,], Blk—1,j-w,]+b,} otherwise

4 Recursive computation
not necessary

4 Compute iteratively,
bottom-up

4 All B[k-1,*] must be
computed before B[k, *]
because of subproblem
dependencies

4 This is also dynamic
programming.

Dynamic Pro

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit b;
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to I do {base case}
B[0,w] « 0
for ki < 1 to n do
forj < 1to Wdo
if w, > j then
Blkyj] < Blk-1,j]
else
Blk,j] < max(B[k-1,],
| Blk-Ljw,]+b)

2

The 0/1 Knapsack
“Algorithm- Iterative

0

Blk, jl1= Blk—

Not necessary to use all the
space

Keep track of one row at a
time

Overwrite results from
previous row as new values
computed

Must compute right to left (W
downto 1) so that the next
row (B[k,*]) uses results from
the previous row (B[k-1,*]).

ifk=0

L /] if w, > j

max{B[k—1, /], Blk—1,j-w/]+b.} otherwise

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit b;
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to I do {base case}
BI8; w] < 0
for k < 1ton do
for j < IV downto 7 do
if w, > j then
Blej] < BEj]
else
Blerj] < max(Bpeh, jl,
Bt j-w, I +b,)

4

Simplify this to get version in
book. Dynamic Pro

The 0/1 Knapsack
“Algorithm- Iterative

0

Blk, j] ={ Blk-1,]

®=n A
if k=0
ifw,>j

max{B[k -1, /], Blk—1,j-w/]+b,} otherwise

Not necessary to use all the
space

Keep track of one row at a
time

Overwrite results from
previous row as new values
computed

*

Algorithm 01Knapsack(S, W):

Input: sct § of # items w/ benefit b;
and weight w;; max. weight W

Output: benefit of best subset with
weight at most W

for w « 0 to I do {base case}
Blw] < 0

for i < 1 to n do
for j « W downto / do

Must compute right to left (W if w, > j then
downto 1) so that the next ;il 1< BLI
row (B[k,*]) uses results from else
the previous row (B[k-1,*]). Bl < max(BLj]
Simplify this to get version in Bl jow,4b,)
book. Dynamic Programming-version-2— -~ 8
The 0/1 Knapsack ,
. ym—mwy L
Algorithm T/<%.C
{ Blk-1,w] if w,>w
Blk,w]=
max {B[k -1, w], Blk-1,w-w.]+b} else

#|The book version:
= When value does not change
from one row to the next,
then no need to assign same
value.
4 Running time: O(nW).
4 Not a polynomial-time
algorithm if W is large
4 This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: sct S of # items w/ benefit b,
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to /' do
Blw] <0
for ik < 1 to n do
for w «— /¥ downto w, do
if B[w-w,|+b, > B[w| then
Blw| < Blw-w,]+b,

Dynamic Programming version 1.2

29

