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Outline and Reading

# Matrix Chain-Product (8§5.3.1)
# The General Technique (§5.3.2)
# 0-1 Knapsack Problem (8§5.3.3)
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Computing Fibonacci

# Dynamic Programming # Recursive solution:
is a general algorithm = int fib(int x)
design paradigm: if (x=0) return 0;
» Iteratively solves small elseif (x=1) return 1;
subproblems which are else return fib(x-1) +

combined to solve overall fib(x-2);
problem.
4 Fibonacci numbers # Dynamic Programming
defined Solution:
= Fy= = f[0]=0; f[1]=1;
» F=1 for i <2 to x do

f[i] « f[i-1] + f[i-2];

= F,=F  +F,forn>1 return f[xJ;
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Dynamic Programming
‘revealed

| @ Break problem into subproblems
(Hardest part!)
subproblems are shared

optimal subproblem solution needs to help solve
overall problem. (subproblem optimality)

# Compute solutions to small subproblems
# Store solutions in array A.

# Combine already computed solutions into
solutions for larger subproblems

4 Solutions Array A is iteratively filled

# (Optional: reduce space needed by reusing
array)
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Reducing Space for
Computing Fibonacci

& store only previous 2 values to compute next
value
= int fib(x)
if (x=0) return 0;
else if (x=1) return 1;
else
int last «<— 1; nextlast <— 0;
for i< 2toxdo
temp < last + nextlast;
nextlast < last;
last «<— temp;
return temp;
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'Matrix Chain-Products "‘i’i‘

4 Review: Matrix Multiplication.

s C=A*B
n Aisdxeand Bise x f f
e—1 (_H
Cli, j1= ) Ali,k1* Blk, ] B
k=0

n O(def) time (def multiplications) e

==
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'Matrix Chain-Products "‘i’i‘

# Matrix Chain-Product:
= Compute A=A*A*.. %A,
= Ajisdix dyy
= Problem: How to parenthesize? [for
minimizing ops]
4 Example
= Bis 3 x 100
= Cis 100 x 5
n Dis5x5
= (B*C)*D takes 1500 + 75 = 1575 ops
= B*(C*D) takes 1500 + 2500 = 4000 ops
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An Enumeration Approach

| @ Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=AFAK. KA (V8
= Calculate number of ops for each one
= Pick the one that is best
# Running time:
= The number of paranethesizations is equal
to the number of binary trees with n nodes
= This is exponential!

= It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!
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A Greedy Approach

# Idea #1: repeatedly select the product that
uses (up) the most operations.
# Counter-example:
» Ais10 x5
= Bis5x 10
» Cis10 x5
» Dis5x 10
= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
A*((B*C)*D) takes 500+250+250 = 1000 ops
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@ Idea #2: repeatedly select the product that uses

the fewest operations.
# Counter-example:

= Ais 101 x 11

= Bis11 x 9

= Cis9 x 100

= Dis 100 x 99

= Greedy idea #2 gives A*((B*C)*D)), which takes

109989+9900+108900=228789 ops

= (A*B)*(C*D) takes 9999+89991+89100=189090 ops
4 The greedy approach is not giving us the
optimal value
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A “Recursive” Approach

% Define subproblems:
= Find the best parenthesization of A*A,  *.. *A;.

= Let N;; denote the number of operations done by this
subproblem.

= The optimal solution for the whole problem is Ny ;.

4 Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression
tree) for the optimal solution.
Say, the final multiply is at index i: (Ag*... *A)*(A *.. ¥A, ).
Then the optimal solution Ny .., is the sum of two optimal
subproblems, Ny; and Ny, ., plus the time for the last multiply.
If subproblems were not optimal, neither is global solution.
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A Characterizing
Equation

# Define global optimal in terms of optimal subproblems,
by checking all possible locations for final multiply.
= Recall that A is a d, x d,,, dimensional matrix.
= So, a characterizing equation for N;; is the following:

N,

i =

min{N, + N,

i<k<j

+ didk+1dj+1}

+1,j

# Note that subproblems are not independent--the
subproblems overlap (are shared)
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A Dynamic Programming
“Algorithm

| Construct optimal

subproblems Algorithm matrixChain(S):

“bottom-up.” Input: sequence S of n matrices to be multiplied
# N, /s are easy, so Output: number of operations in an optimal

Stért with them paranthesization of §
#| Then do length fori <« 1ton-Ido

2,3,... subproblems, Ny« 0

and so on. for b < 1 to n-1 do
# Array N;;stores for i < 0 to n-b-1 do

solutions jeith
# Running time: O(n?) N, « +infinity

for k < itoj-I do
Nij = min{N;; . Ny +Njoy j i dpsy dig}
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A Dynamic Programming
Algorithm Visualization

# The bottom-up NI,_/ EE}{NM + Nk+l,j + dldk+|dj+|} g
construction fillsinthe  N|o 1 2 it
N array by diagonals 0 . —
# N,; gets values from 1
pervious entries in i-th
row and j-th column i ||

# Filling in each entry in
the N table takes O(n)
time.

4 Total run time: O(n%)

@ Getting actual n-1
parenthesization can be
done by remembering
“k” for each N entry
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The General Dynamic
Programming Technique

# Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).
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‘The 0/1 Knapsack Problem ; =

# Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
4 Goal: Choose items with maximum total benefit but with
weight at most W.
4 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Z b[.
ieT

= Constraint: ZW,. <w

iel
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Example S

A}
(<

# Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
@ Goal: Choose items with maximum total benefit but with

weight at most W.
Iy “knapsack”
. Solution:
Items: [\/:L ©5(2in)
1 2 3 a *3(2in)
o1 (4i
Weight: 4in  2in 2in 6in 2in ] n
Benefit: $20 $3 6 $25 $80 9in
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A 0/1 Knapsack Algorithm,
First Attempt

| # S,: Set of items numbered 1 to k.

4 Define B[k] = best selection from S,.

% Problem: does not have subproblem optimality:
= Consider S={(3,2),(5,4),(8,5),(4,3),(10,9)} benefit-weight pairs

Best for S,: || G4l | || I
Best for Sg: [ I
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A 0/1 Knapsack Algorithm,

(G
Second Attempt e
. N N
1 #S,: Set of items numbered 1 to k. w

4@ Define B[k,w] = best selection from S, with
weight exactly equal to w

# Good news: this does have subproblem
optimality:

{ Blk—1,w] if w, > w

Blk,w]=

max {B[k —1,w], Bk —1,w—w,]+b,}  else

# L.e., best subset of S, with weight exactly w is
either the best subset of S, ; w/ weight w or the
best subset of S;_; w/ weight w-w, plus item k.

Dynamic Programming version 1.2 19

|

The 0/1 Knapsack
Algorithm

# |Recall definition of B[k,w]:
{ Blk-1,w] if w,>w
Blk,w]=
max {B[k -1, w], Blk-1,w-w.]+b} else

:T’Eg ~
IS
RN

Algorithm 01Knapsack(S, W):
Input: set S of items w/ benefit b;

4|Since B[k,w] is defined in

terms of B[k'l,*], we can and weight w; max. weight W
reuse the same array Output: benefit of best subset with
4 Running time: O(nW). weight at most

N for w < 0 to W do
# Not a polynomial-time Blw] « 0

alg.or'lthm if W is large . for k < 1 to 1 do
# This is a pseudo-polynomial for w < ¥ downto w, do
time algorithm if B[w-w,]+b, > B[] then
Blw| < Blw-w,]+b,
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Dynamic Programming
‘revealed

" # Break problem into subproblems that are

= shared
have subproblem optimality (optimal subproblem
solution helps solve overall problem)
subproblem optimality means can write recursive
realtionship between subproblems!

# Compute solutions to small subproblems

# Store solutions in array A.

# Combine already computed solutions into
solutions for larger subproblems

# Solutions Array A is iteratively filled

# (Optional: reduce space needed by reusing
array)
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‘The 0/1 Knapsack Problem [@wf

&l

% Given: Aset Sof n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
4 Goal: Choose items with maximum total benefit but with
weight at most W.
4 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Zbi
ieT
» Constraint: ZW,. <W
ieT
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Towards the 0/1 Knapsack @F@ ~ /A
. -

Algorithm i%ﬁ
. 24

@ S,: Set of items numbered 1 to k = {(b;,w,), (b,,w,);

wer (D W)}

# | Define B[k,j] = maximum benefit of optimal subset

from S, with total weight at most j

# Recursive definition of B[k,j]:

0 if k=0

Blk, j1= Blk—1,/] ifw, >
max {B[k -1, j], Blk—1,j—w,]+b,} otherwise

—
B
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Towards the 0/1 Knapsack
Algorithm =

0 ifk=0
Blk, j]= Blk-1,/] if w, > j
max{B[k—1, /], Blk—1,j-w/]+b.} otherwise
Algorithm rec01Knap(S, W):
& B[k ]] = maximum beneﬁt Input: set S of & items w/ benefit b, b,, ...
bt b, ights wy, wy, ... w;; and max.
of optimal subset from S, wataht W
with total Weight at mostj Output: benefit of best subset with
: : weight at most W
# Recursive version of £ 4=0 then {8 = emptyset}
algorithm based on return 0
recursive subproblem remove item k (benefit-weight (b,.w,))
relationship. from S
# Not a dynamic if w, > 1 then {item k does not fit}
programming version. return rec0lKnap(S,W)
return max(rec01Knap(S,W),
rec0l1Knap(S,W-w,) +b,)
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Towards the 0/1 Knapsack

“Algorithm

=

0 if k=0
Blk, j1= Blk-1,] if w, > j
max{B[k -1, /], Blk—1,j-w,/]+b,} otherwise
4 |Modified recursive version | Algorithm rec01Knap(S, W):

that stores subproblem
solutions

= First allocate global array
B of size n+1 by W
Then initialize all entries
of B[i,j]to -1
B stores results of
recursive calls
Entries in B are
computed when
necessary
% This is considered a

Input: sct § of & items w/ benefit b, b,, .
weights wj, wy, ...

w,; and max. weight Hk
Output: benefit of best subset with
weight at most W
if k=0 then return 0
remove item k (benefit-weight (b,,w,)) from S
if B[k-1, W]= -1 then B[k-1,W]=rec01Knap(S,W)
if w, > I then
return Blk-1, W]
if B[k-1, W-,]=—1 then
Blk-1,W - w,|=rec0IKnap(S,W -w,)
return max(B[k-1, W], B[k-1,W - w ]+b,)

dynamic programming
version.
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The 0/1 Knapsack

Algorithm- Ite

Blk, j1= Bk~

el

rative

ifk=0

1/] ifw, > j

max {B[k—1, ], Blk—1,j-w,]+b,} otherwise

4 Recursive computation
not necessary

4 Compute iteratively,
bottom-up

4 All B[k-1,*] must be
computed before B[k, *]
because of subproblem
dependencies

4 This is also dynamic
programming.

Dynamic Pro

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit b;
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to I do {base case}
B[0,w] « 0
for ki < 1 to n do
forj < 1to Wdo
if w, > j then
Blkyj] < Blk-1,j]
else
Blk,j] < max(B[k-1,],
| Blk-Ljw,]+b)

2

The 0/1 Knapsack
“Algorithm- Iterative

0

Blk, jl1= Blk—

Not necessary to use all the
space

Keep track of one row at a
time

Overwrite results from
previous row as new values
computed

Must compute right to left (W
downto 1) so that the next
row (B[k,*]) uses results from
the previous row (B[k-1,*]).

ifk=0

L /] if w, > j

max{B[k—1, /], Blk—1,j-w/]+b.} otherwise

Algorithm 01Knapsack(S, W):
Input: set S of n items w/ benefit b;
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to I do {base case}
BI8; w] < 0
for k < 1ton do
for j < IV downto 7 do
if w, > j then
Blej] < BEj]
else
Blerj] < max(Bpeh, jl,
Bt j-w, I +b,)

4

Simplify this to get version in
book. Dynamic Pro




The 0/1 Knapsack
“Algorithm- Iterative

0

Blk, j] ={ Blk-1, ]

®=n A
if k=0
ifw,>j

max{B[k -1, /], Blk—1,j-w/]+b,} otherwise

Not necessary to use all the
space

Keep track of one row at a
time

Overwrite results from
previous row as new values
computed

*

Algorithm 01Knapsack(S, W):

Input: sct § of # items w/ benefit b;
and weight w;; max. weight W

Output: benefit of best subset with
weight at most W

for w « 0 to I do {base case}
Blw] < 0

for i < 1 to n do
for j « W downto / do

# Must compute right to left (W if w, > j then
downto 1) so that the next ;il 1< BLI
row (B[k,*]) uses results from else
the previous row (B[k-1,*]). Bl < max(BLj]
# Simplify this to get version in Bl jow,4b,)
book. Dynamic Programming-version-2— -~ 8
The 0/1 Knapsack ,
. ym—mwy L
Algorithm T/<%.C
{ Blk-1,w] if w,>w
Blk,w]=
max {B[k -1, w], Blk-1,w-w.]+b} else

#|The book version:
= When value does not change
from one row to the next,
then no need to assign same
value.
4 Running time: O(nW).
4 Not a polynomial-time
algorithm if W is large
4 This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: sct S of # items w/ benefit b,
and weight w;; max. weight W
Output: benefit of best subset with
weight at most W
for w < 0 to /' do
Blw] <0
for ik < 1 to n do
for w «— /¥ downto w, do
if B[w-w,|+b, > B[w| then
Blw| < Blw-w,]+b,
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