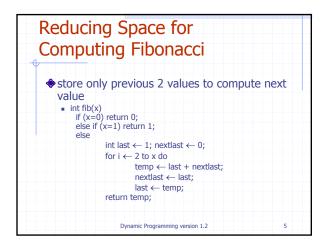
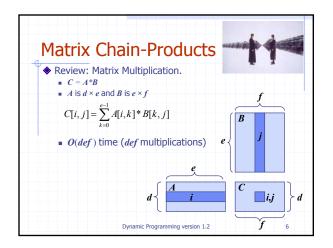
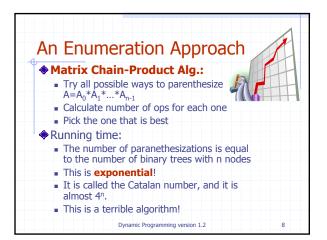


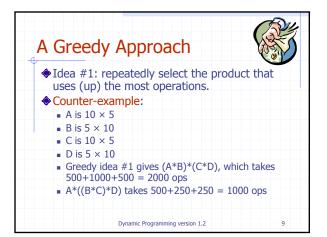
Dynamic Programming revealed	
 Break problem into subproblems (Hardest part!) 	
 subproblems are shared 	
 optimal subproblem solution needs to help solve overall problem. (subproblem optimality) 	
Compute solutions to small subproblems	
Store solutions in array A.	
 Combine already computed solutions into solutions for larger subproblems 	
 Solutions Array A is iteratively filled 	
 (Optional: reduce space needed by reusing array) 	
Dynamic Programming version 1.2	4



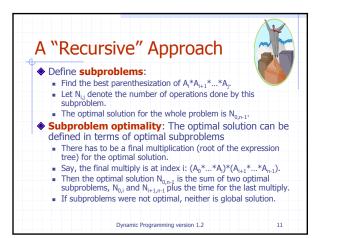


Matrix Chain-Products	-
Matrix Chain-Product:	I
Compute A=A ₀ *A ₁ **A _{n-1}	
• A_i is $d_i \times d_{i+1}$	
 Problem: How to parenthesize? [for minimizing ops] 	
Example	
■ B is 3 × 100	
■ C is 100 × 5	
■ D is 5 × 5	
 (B*C)*D takes 1500 + 75 = 1575 ops 	
 B*(C*D) takes 1500 + 2500 = 4000 ops 	
Dynamic Programming version 1.2	7



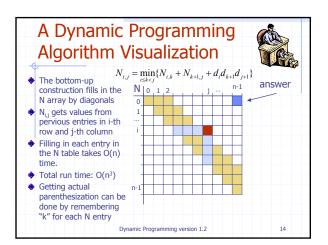


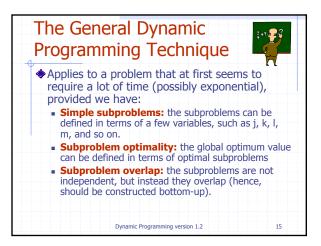
Another Greedy Approach	5
 Idea #2: repeatedly select the product that us the fewest operations. 	es
Counter-example:	
A is 101 × 11	
B is 11 × 9	
■ C is 9 × 100	
■ D is 100 × 99	
 Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops 	
 (A*B)*(C*D) takes 9999+89991+89100=189090 o 	ps
The greedy approach is not giving us the optimal value. Dynamic Programming version 1.2	



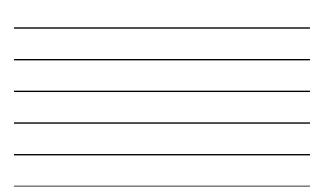
A Characterizing	C.
 Define global optimal in terms of optimal subprot by checking all possible locations for final multiply Recall that A_i is a d_i × d_{i+1} dimensional matrix. So, a characterizing equation for N_{i,j} is the following: 	olems, ⁄.
$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$	1}
 Note that subproblems are not independentthe subproblems overlap (are shared) 	
Dynamic Programming version 1.2	12

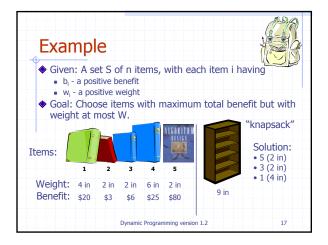
A Dynami Algorithm	c Programming	
 Construct optimal subproblems "bottom-up." N₁,'s are easy, so start with them Then do length 2,3, subproblems, and so on. Array N₁, stores solutions Running time: O(n³) 	Algorithm matrixChain(S): Input: sequence S of n matrices to Output: number of operations in ar paranthesization of S for $i \leftarrow 1$ to $n-1$ do $N_{i,i} \leftarrow 0$ for $b \leftarrow 1$ to $n-1$ do for $b \leftarrow 1$ to $n-1$ do for $i \leftarrow 0$ to $n-b-1$ do $j \leftarrow i+b$ $N_{i,j} \leftarrow +infinity$ for $k \leftarrow i$ to $j-1$ do $N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k}+N_k\}$ Dynamic Programming version 1.2	n optimal

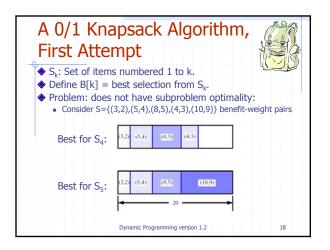


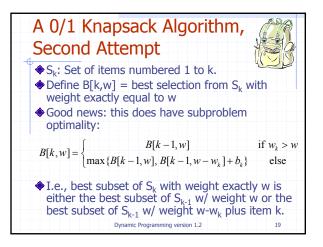


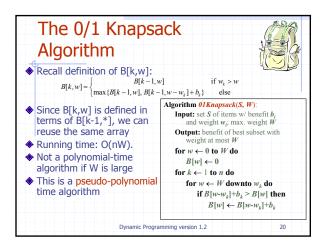
The 0/1 Knapsack Problem	
 Given: A set S of n items, with each item i have b₁ - a positive benefit w_i - a positive weight Goal: Choose items with maximum total benefit weight at most W. If we are not allowed to take fractional amount 	it but with
this is the 0/1 knapsack problem . In this case, we let T denote the set of items we take	е
• Objective: maximize $\sum_{i \in T} b_i$	
• Constraint: $\sum_{\substack{i \in T \\ \text{Dynamic Programming version 1.2}}} W_i \leq W$	16



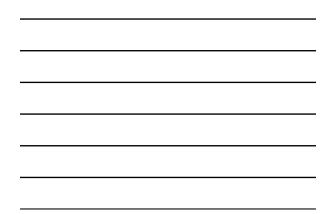








Dynamic Programming revealed	
 Break problem into subproblems that are shared have subproblem optimality (optimal subproblem solution helps solve overall problem) subproblem optimality means can write recursive 	
 realtionship between subproblems! Compute solutions to small subproblems Store solutions in array A. 	
 Combine already computed solutions into solutions for larger subproblems 	
 Solutions Array A is iteratively filled 	
 (Optional: reduce space needed by reusing array) 	
Dynamic Programming version 1.2	21

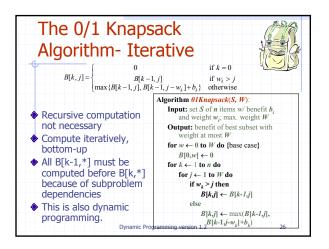


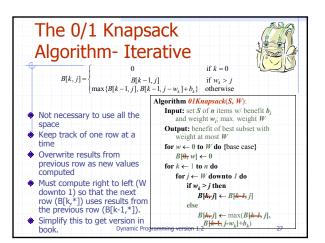
The 0/1 Knapsack Problem
 Given: A set S of n items, with each item i having b_i - a positive benefit w_i - a positive weight Goal: Choose items with maximum total benefit but with weight at most W. If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem. In this case, we let T denote the set of items we take
• Objective: maximize $\sum_{i \in T} b_i$
• Constraint: $\sum_{\substack{i \in T \\ \text{Dynamic Programming version } 1,2}} W_i \leq W$

Towards Algorithn	the 0/1 Knapsa n	ck
, (b _k ,w _k)} ♦ Define B[k,j] = I	numbered 1 to k = {(b ₁ ,w ₁), maximum benefit of optimal s al weight at most j tion of B[k,j]:	
$B[k, j] = \begin{cases} \\ max \end{cases}$	$\begin{array}{c} 0 & \text{if } k=0\\ B[k-1,j] & \text{if } w_k > \\ x\left\{B[k-1,j], B[k-1,j-w_k] + b_k\right\} & \text{otherwi} \end{array}$	j se
	Dynamic Programming version 1.2	23



	O/1 Knapsack if $k = 0$ if $k = 0$ if $w_k > j$ i, $B[k-1, j - w_k] + b_k$ otherwise	
 Modified recursive version that stores subproblem solutions First allocate global array B of size n+1 by W Then initialize all entries of B[i,j] to -1 B stores results of recursive calls Entries in B are computed when necessary This is considered a dynamic programming version. Dynam 	Algorithm rec01 Knap(S, W): Input: set S of k items w/ benefit $b_p, b_2,, b_k$; weights $w_p, w_p,, w_k$ and max. weight W Output: benefit of best subset with weight at most W if $k=0$ then return 0 remove item k (benefit-weight (b_k, w_k)) from S if $B_k - 1, W_l = -1$ then $B[k-1, W] = rec01Knap(S, W)$ if $w_k > W$ then return $B[k-1, W]$ if $B[k-1, W-w_k] = -1$ then $B[k-1, W-w_k] = rec01Knap(S, W - w_k)$ return max(B[k-1, W], B[k-1, W - w_k] + b_k) nic Programming version 1.2 25	





The 0/1 Knaps Algorithm- Iter	
	if $k = 0$
$B[k, j] = \begin{cases} B[k-1], \\ \max \{B[k-1, j], B[k-1]\} \} \end{cases}$	$\begin{cases} J & \text{if } w_k > j \\ -1, j - w_k] + b_k \end{cases} \text{ otherwise}$
	Algorithm 01Knapsack(S, W): Input: set S of n items w/ benefit b,
 Not necessary to use all the space Keep track of one row at a time 	and weight w_i max. weight W Output: benefit of best subset with weight at most W for $w \leftarrow 0$ to W do {base case}
 Overwrite results from previous row as new values computed 	$B[w] \leftarrow 0 \text{do we do to ase case}$ $B[w] \leftarrow 0 \text{for } k \leftarrow 1 \text{ to } n \text{ do} \text{for } i \leftarrow W \text{ downto } i \text{ do}$
 Must compute right to left (W downto 1) so that the next row (B[k,*]) uses results from the previous row (B[k-1,*]). Simplify this to get version in book. Dynamic Program 	$\begin{array}{c} \text{if } \mathbf{y} \leftarrow \mathcal{F} \text{ if } \mathbf{h} \\ \text{if } \mathbf{y}_k > \mathbf{j} \text{ then } \\ B[j] \leftarrow B[j] \\ \text{else } \\ B[j] \leftarrow \max(B[j], \\ \frac{B[j - w_k] + b_k}{2} \\ \end{array}$

