‘Transitive Closure

4 Given a digraph G, the
transitive closure of G is the
digraph G* such that

= G* has the same vertices
as G

= if G has a directed path
from u to v (u #v), G*
has a directed edge from
utov

The transitive closure
provides reachability
information about a digraph

Q

:

> @
t"‘

floyd vi.1 1

Computing the
Transitive Closure

4 We can perform
DFS starting at
each vertex

= DFS(G,v) finds
nodes reachable
from v

+ for each
reachable node

w, add edge

(v,w) to G*

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

#Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

floyd vi.1 2

Floyd-Warshall

Transitive Closure

| # Idea #1: Number the vertices 1, 2, ..., n. Call
them vy, vy, ... V.
Idea #2: Consider paths that use only vertices
Vy, Vy, ..y Vy, @s intermediate vertices
On path P,, intermediate vertices
are X,W, and Y.

Subproblem definition: G is
a graph where
= directed edge (v; v)) if G has a
directed path from v, to v; with
intermediate vertices in tI']1e set
{Vir Vo ooy Vi

floyd vi.1 3

Floyd-Warshall

Transitive Closure

Constructing G, from G, :
4 For each pair of vertices (v;v;) in G, ;
s If (v,v) isin G, then itis also in G,

= If (v;,vy) and (v,v)) are in Gy, then (v,,v)) is
in G,.

Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

Uses only vertices

numbered 1,...,k-1 Uses only vertices

numbered 1,...,k-1
floyd vi.1 4

Floyd-Warshall’s Algorithm

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i1
for all v € G.vertices()
denote v as v;

' Floyd-Warshall’s algorithm

numbers the vertices of G as

Vi, s ¥, and computes a

series of digraphs G, ..., G,
s GG

= G, has a directed edge (v, v)

i—i+]1
if G has a directed path from G '<_ 'G
v; to v, with intermediate for k < 1 to n do
vertices in the set {v,, ..., v} . .

G, <G, _,

We have that G,= G*
In phase k, digraph G, is

for i« 1 ton (i k) do
forj <« 1ton(j#i k) do

& @

computed from G, _,
Running time: O(n3),
assuming areAdjacent is O(1)

if G, _.areAdjacent(v, v)) A
G, _.areAdjacent(v, v;)
if G areddjacent(v, v;)

G.insertDirectedEdge(v, v;, k)
return G,
floyd vi.1 5

(e.g., adjacency matrix)

'Floyd-Warshall Example

floyd vi.1 6

floyd vi.1

floyd vi.1

‘Floyd-Warshall, Iteration 3

floyd vi.1

Floyd-Warshall, Iteration 4

