
Pattern Matching 3/13/2003 10:44 AM

1

MoreStuff v 1.1 1

More Stuff
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Traveling Salesman Problem

Input: Undirected weighted graph 
G = (V,E). Let W(e) denote the cost of 
edge e.
Output: A tour P with minimum total 
cost. (A tour is a cycle P that visits all 
vertices exactly once).  That is: for all 
edges e in tour P, minimize
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General Backtrack Search Skeleton

BacktrackOptimalSearch( // very rough outline
Let move1, move2, … movek represent the k 

possible ways of making the next step. 
For each possible way movei

try movei.
assuming movei was done,

make recursive call to find best solution
on smaller subproblem

overall solution cost = 
best subproblem solution + cost (movei)

keep track of best overall cost so far
return best overall cost found. 
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line-breaking problem

Given sequence of words from one paragraph
Return where line-breaks should occur
Minimize empty space on each line (except 
for last line of paragraph)
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A simple version:
letters and spaces have equal width
input is set of n word lengths, w1, w2, … wn

also given line width limit L.
each length wi includes one space
Placing words i up to j on one line means

Penalty for extra spaces                  is X3

Minimize sum of penalties from each line (no last 
line penalty)

line-breaking problem
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Recursive Backtrack Search

Let w[] be array of lengths of n words; L is line width
Compute lineBreak(0) to solve linebreaking problem.
Algorithm lineBreak(i) {

Input: Integer i indicating which word subproblem starts at.
Output: returns minimum total penalty when

placing w[i], w[i+1], … w[n-1] into lines
if (w[i] + w[i+1] + … + w[n-1] < L) return 0;
mincost ← Infinity;
k ← 1;
while (k words starting from w[i] fit on a line)

// meaning (w[i] + w[i+1] + … + w[i+k-1] <= L)
linecost ← penalty from placing words w[i] to w[i+k-1]

on one line.
totalcost ← linecost + lineBreak(i+k);
mincost ← min(totalcost, mincost)  // track minimum so far
k++;

return mincost; 
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Example problem

Paragraph is:
Those who cannot remember the past are 
condemned to repeat it.

Word lengths are 6,4,7,9,4,5,4,10,3,7,4.
Suppose line width L = 17. 
Find an optimal way of separating words into 
lines that minimizes penalty.

MoreStuff v 1.1 8

Greedy method

Input: 
int [] w : array of word lengths.
int n : length of w. 
int L : line length

Output: 
int [] LastWord : array for storing last word on 
each line. 
LastWord[i] is the index of the last word stored on 
line i. 
// start counting arrays at index 0. 
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Dynamic Programming

DP version of Recursive backtrack
LineBreak problem

Use array lineB[] to store subproblem costs
lineB[i] is min cost of linebreaking solution
for words (w[i], w[i+1], … w[n-1]).

compute lineB in reverse order 
(from n-1 down to 0). 
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linebreak DP

for i ← n-1 downto 0 do
if (w[i] + w[i+1] + … + w[n-1] < L) 

lineB[i] ← 0;
else 

mincost ← Infinity;
k ← 1;
while (k words starting from w[i] fit on a line)

// meaning (w[i] + w[i+1] + … + w[i+k-1] <= L)
linecost ← penalty from placing words w[i] to w[i+k-1]

on one line.
totalcost ← linecost + lineB[i+k];
mincost ← min(totalcost, mincost)  // track min. so far
k++;

lineB[i]=mincost; 
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linebreak DP cost

O(nL); L is maximum width
Linear if L is considered constant
Space O(n). 
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Longest Common 
Subsequence

Given : two strings A & B
Find longest common (possibly non-

contiguous) subsequence
Here, subsequence ≠ substring
Example: A= “R8D4F7G”

B= “4RD97G2”
answer is “RD7G” 
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Vertex Cover
A vertex cover of graph G=(V,E) is a subset W 
of V, such that, for every edge (a,b) in E, a is in 
W or b is in W. 
VERTEX-COVER: Given an graph G and an 
integer K, return a vertex cover of size K (if it 
exists)
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A clique of a graph G=(V,E) is a subgraph C 
that is fully-connected (every pair in C has an 
edge).
CLIQUE: Given a graph G and an integer K, 
return a clique in G of size K (if it exists)

Clique

This graph has
a clique of size 5
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Some Other 
Problems

SET-COVER: Given a collection of m sets, and an 
integer K, pick K of the sets such that the union of 
the K sets is the same as the union of the whole 
collection of m sets.
SUBSET-SUM: Given a set of integers and an integer 
K, find a subset of the integers that sums to exactly 
K.
0/1 Knapsack: Given a collection of items with 
weights and benefits, find a subset of weight at most 
W and benefit at least K.
Hamiltonian-Cycle: Given an graph G, find a cycle in 
G that visits each vertex exactly once
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Outline and Reading

Strings (§9.1.1)
Pattern matching algorithms

Brute-force algorithm (§9.1.2)
Boyer-Moore algorithm (§9.1.3)
Knuth-Morris-Pratt algorithm (§9.1.4)
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Strings
A string is a sequence of 
characters
Examples of strings:

Java program
HTML document
DNA sequence
Digitized image

An alphabet Σ is the set of 
possible characters for a 
family of strings
Example of alphabets:

ASCII
Unicode
{0, 1}
{A, C, G, T}

Let P be a string of size m
A substring P[i .. j] of P is the 
subsequence of P consisting of 
the characters with ranks 
between i and j
A prefix of P is a substring of 
the type P[0 .. i]
A suffix of P is a substring of 
the type P[i ..m − 1] 

Given strings T (text) and P
(pattern), the pattern matching 
problem consists of finding a 
substring of T equal to P
Applications:

Text editors
Search engines
Biological research
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Brute-Force Algorithm
The brute-force pattern 
matching algorithm compares 
the pattern P with the text T
for each possible shift of P
relative to T, until either

a match is found, or
all placements of the pattern 
have been tried

Brute-force pattern matching 
runs in time O(nm)
Example of worst case:

T = aaa … ah
P = aaah
may occur in images and 
DNA sequences
unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text T of size n and pattern 

P of size m
Output starting index of a 

substring of T equal to P or −1
if no such substring exists 

for i ← 0 to n − m
{ test shift i of the pattern }
j ← 0
while j < m ∧ T[i + j] = P[j]

j ← j + 1
if  j = m

return  i {match at i}
else

break while loop {mismatch}
return  -1 {no match anywhere}
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Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two 
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] = c

If P contains c, shift P to align the last occurrence of c in P with T[i] 
Else, shift P to align P[0] with T[i + 1]

Example 

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011
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Last-Occurrence Function
Boyer-Moore’s algorithm preprocesses the pattern P and the 
alphabet Σ to build the last-occurrence function L mapping Σ to 
integers, where L(c) is defined as

the largest index i such that P[i] = c or
−1 if no such index exists 

Example:
Σ = {a, b, c, d}
P = abacab

The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters
The last-occurrence function can be computed in time O(m + s), 
where m is the size of P and s is the size of Σ

−1354L(c)
dcbac
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m − j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1: j ≤ 1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, Σ)

L ← lastOccurenceFunction(P, Σ )
i ← m − 1
j ← m − 1
repeat 

if T[i] = P[j]
if  j = 0

return  i  { match at i }
else

i ← i − 1
j ← j − 1

else
{ character-jump }
l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m − 1

until  i > n − 1
return  −1 { no match }

m − (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l ≤ j
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Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b
1113
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Analysis
Boyer-Moore’s algorithm 
runs in time O(nm + s)
Example of worst case:

T = aaa … a
P = baaa

The worst case may occur in 
images and DNA sequences 
but is unlikely in English text
Boyer-Moore’s algorithm is 
significantly faster than the 
brute-force algorithm on 
English text

11

1

a a a a a a a a a

23456
b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324
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The KMP Algorithm - Motivation
Knuth-Morris-Pratt’s algorithm 
compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently 
than the brute-force algorithm. 
When a mismatch occurs, 
what is the most we can shift 
the pattern so as to avoid 
redundant comparisons?
Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here
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KMP Failure Function
Knuth-Morris-Pratt’s 
algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself
The failure function F(j) is 
defined as the size of the 
largest prefix of P[0..j] that is 
also a suffix of P[1..j]
Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j] ≠ T[i] 
we set  j ← F(j − 1)

1
a
3

2
b
4 5210j

3100F(j)
aabaP[j]

x

j

. . a b a a b . . . . .

a b a a b a

F(j − 1)

a b a a b a
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The KMP Algorithm
The failure function can be 
represented by an array and 
can be computed in O(m) time
At each iteration of the while-
loop, either

i increases by one, or
the shift amount i − j
increases by at least one 
(observe that F(j − 1) < j)

Hence, there are no more 
than 2n iterations of the 
while-loop
Thus, KMP’s algorithm runs in 
optimal time O(m + n)

Algorithm KMPMatch(T, P)
F ← failureFunction(P)
i ← 0
j ← 0
while i < n

if T[i] = P[j]
if  j = m − 1

return  i − j { match }
else

i ← i + 1
j ← j + 1

else
if  j > 0

j ← F[j − 1]
else

i ← i + 1
return  −1 { no match }
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Computing the Failure 
Function

The failure function can be 
represented by an array and 
can be computed in O(m) time
The construction is similar to 
the KMP algorithm itself
At each iteration of the while-
loop, either

i increases by one, or
the shift amount i − j
increases by at least one 
(observe that F(j − 1) < j)

Hence, there are no more 
than 2m iterations of the 
while-loop

Algorithm failureFunction(P)
F[0] ← 0
i ← 1
j ← 0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i] ← j + 1
i ← i + 1
j ← j + 1

else if  j > 0 then
{use failure function to shift P}
j ← F[j − 1]

else
F[i] ← 0 { no match }
i ← i + 1
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Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

0
c
3

1
a
4 5210j

2100F(j)
babaP[j]


