
Pattern Matching 3/13/2003 10:44 AM

1

MoreStuff v 1.1 1

More Stuff

MoreStuff v 1.1 2

Traveling Salesman Problem

Input: Undirected weighted graph
G = (V,E). Let W(e) denote the cost of
edge e.
Output: A tour P with minimum total
cost. (A tour is a cycle P that visits all
vertices exactly once). That is: for all
edges e in tour P, minimize

∑
∈

=
Pe

eWPW)()(

MoreStuff v 1.1 3

General Backtrack Search Skeleton

BacktrackOptimalSearch(// very rough outline
Let move1, move2, … movek represent the k

possible ways of making the next step.
For each possible way movei

try movei.
assuming movei was done,

make recursive call to find best solution
on smaller subproblem

overall solution cost =
best subproblem solution + cost (movei)

keep track of best overall cost so far
return best overall cost found.

Pattern Matching 3/13/2003 10:44 AM

2

MoreStuff v 1.1 4

line-breaking problem

Given sequence of words from one paragraph
Return where line-breaks should occur
Minimize empty space on each line (except
for last line of paragraph)

MoreStuff v 1.1 5

A simple version:
letters and spaces have equal width
input is set of n word lengths, w1, w2, … wn

also given line width limit L.
each length wi includes one space
Placing words i up to j on one line means

Penalty for extra spaces is X3

Minimize sum of penalties from each line (no last
line penalty)

line-breaking problem

Lw
j

ik
i ≤∑

=

∑
=

−=
j

ik
iwLX

MoreStuff v 1.1 6

Recursive Backtrack Search

Let w[] be array of lengths of n words; L is line width
Compute lineBreak(0) to solve linebreaking problem.
Algorithm lineBreak(i) {

Input: Integer i indicating which word subproblem starts at.
Output: returns minimum total penalty when

placing w[i], w[i+1], … w[n-1] into lines
if (w[i] + w[i+1] + … + w[n-1] < L) return 0;
mincost ← Infinity;
k ← 1;
while (k words starting from w[i] fit on a line)

// meaning (w[i] + w[i+1] + … + w[i+k-1] <= L)
linecost ← penalty from placing words w[i] to w[i+k-1]

on one line.
totalcost ← linecost + lineBreak(i+k);
mincost ← min(totalcost, mincost) // track minimum so far
k++;

return mincost;

Pattern Matching 3/13/2003 10:44 AM

3

MoreStuff v 1.1 7

Example problem

Paragraph is:
Those who cannot remember the past are
condemned to repeat it.

Word lengths are 6,4,7,9,4,5,4,10,3,7,4.
Suppose line width L = 17.
Find an optimal way of separating words into
lines that minimizes penalty.

MoreStuff v 1.1 8

Greedy method

Input:
int [] w : array of word lengths.
int n : length of w.
int L : line length

Output:
int [] LastWord : array for storing last word on
each line.
LastWord[i] is the index of the last word stored on
line i.
// start counting arrays at index 0.

MoreStuff v 1.1 9

Dynamic Programming

DP version of Recursive backtrack
LineBreak problem

Use array lineB[] to store subproblem costs
lineB[i] is min cost of linebreaking solution
for words (w[i], w[i+1], … w[n-1]).

compute lineB in reverse order
(from n-1 down to 0).

Pattern Matching 3/13/2003 10:44 AM

4

MoreStuff v 1.1 10

linebreak DP

for i ← n-1 downto 0 do
if (w[i] + w[i+1] + … + w[n-1] < L)

lineB[i] ← 0;
else

mincost ← Infinity;
k ← 1;
while (k words starting from w[i] fit on a line)

// meaning (w[i] + w[i+1] + … + w[i+k-1] <= L)
linecost ← penalty from placing words w[i] to w[i+k-1]

on one line.
totalcost ← linecost + lineB[i+k];
mincost ← min(totalcost, mincost) // track min. so far
k++;

lineB[i]=mincost;

MoreStuff v 1.1 11

linebreak DP cost

O(nL); L is maximum width
Linear if L is considered constant
Space O(n).

MoreStuff v 1.1 12

Longest Common
Subsequence

Given : two strings A & B
Find longest common (possibly non-

contiguous) subsequence
Here, subsequence ≠ substring
Example: A= “R8D4F7G”

B= “4RD97G2”
answer is “RD7G”

Pattern Matching 3/13/2003 10:44 AM

5

MoreStuff v 1.1 13

Vertex Cover
A vertex cover of graph G=(V,E) is a subset W
of V, such that, for every edge (a,b) in E, a is in
W or b is in W.
VERTEX-COVER: Given an graph G and an
integer K, return a vertex cover of size K (if it
exists)

MoreStuff v 1.1 14

A clique of a graph G=(V,E) is a subgraph C
that is fully-connected (every pair in C has an
edge).
CLIQUE: Given a graph G and an integer K,
return a clique in G of size K (if it exists)

Clique

This graph has
a clique of size 5

MoreStuff v 1.1 15

Some Other
Problems

SET-COVER: Given a collection of m sets, and an
integer K, pick K of the sets such that the union of
the K sets is the same as the union of the whole
collection of m sets.
SUBSET-SUM: Given a set of integers and an integer
K, find a subset of the integers that sums to exactly
K.
0/1 Knapsack: Given a collection of items with
weights and benefits, find a subset of weight at most
W and benefit at least K.
Hamiltonian-Cycle: Given an graph G, find a cycle in
G that visits each vertex exactly once

Pattern Matching 3/13/2003 10:44 AM

6

MoreStuff v 1.1 16

Outline and Reading

Strings (§9.1.1)
Pattern matching algorithms

Brute-force algorithm (§9.1.2)
Boyer-Moore algorithm (§9.1.3)
Knuth-Morris-Pratt algorithm (§9.1.4)

MoreStuff v 1.1 17

Strings
A string is a sequence of
characters
Examples of strings:

Java program
HTML document
DNA sequence
Digitized image

An alphabet Σ is the set of
possible characters for a
family of strings
Example of alphabets:

ASCII
Unicode
{0, 1}
{A, C, G, T}

Let P be a string of size m
A substring P[i .. j] of P is the
subsequence of P consisting of
the characters with ranks
between i and j
A prefix of P is a substring of
the type P[0 .. i]
A suffix of P is a substring of
the type P[i ..m − 1]

Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P
Applications:

Text editors
Search engines
Biological research

MoreStuff v 1.1 18

Brute-Force Algorithm
The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

a match is found, or
all placements of the pattern
have been tried

Brute-force pattern matching
runs in time O(nm)
Example of worst case:

T = aaa … ah
P = aaah
may occur in images and
DNA sequences
unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text T of size n and pattern

P of size m
Output starting index of a

substring of T equal to P or −1
if no such substring exists

for i ← 0 to n − m
{ test shift i of the pattern }
j ← 0
while j < m ∧ T[i + j] = P[j]

j ← j + 1
if j = m

return i {match at i}
else

break while loop {mismatch}
return -1 {no match anywhere}

Pattern Matching 3/13/2003 10:44 AM

7

MoreStuff v 1.1 19

Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] = c

If P contains c, shift P to align the last occurrence of c in P with T[i]
Else, shift P to align P[0] with T[i + 1]

Example

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

MoreStuff v 1.1 20

Last-Occurrence Function
Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet Σ to build the last-occurrence function L mapping Σ to
integers, where L(c) is defined as

the largest index i such that P[i] = c or
−1 if no such index exists

Example:
Σ = {a, b, c, d}
P = abacab

The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters
The last-occurrence function can be computed in time O(m + s),
where m is the size of P and s is the size of Σ

−1354L(c)
dcbac

MoreStuff v 1.1 21

m − j

i

j l

. a

. . . . b a

. . . . b a

j

Case 1: j ≤ 1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, Σ)

L ← lastOccurenceFunction(P, Σ)
i ← m − 1
j ← m − 1
repeat

if T[i] = P[j]
if j = 0

return i { match at i }
else

i ← i − 1
j ← j − 1

else
{ character-jump }
l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m − 1

until i > n − 1
return −1 { no match }

m − (1 + l)

i

jl

. a

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l ≤ j

Pattern Matching 3/13/2003 10:44 AM

8

MoreStuff v 1.1 22

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b
1113

MoreStuff v 1.1 23

Analysis
Boyer-Moore’s algorithm
runs in time O(nm + s)
Example of worst case:

T = aaa … a
P = baaa

The worst case may occur in
images and DNA sequences
but is unlikely in English text
Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

11

1

a a a a a a a a a

23456
b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

MoreStuff v 1.1 24

The KMP Algorithm - Motivation
Knuth-Morris-Pratt’s algorithm
compares the pattern to the
text in left-to-right, but shifts
the pattern more intelligently
than the brute-force algorithm.
When a mismatch occurs,
what is the most we can shift
the pattern so as to avoid
redundant comparisons?
Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here

Pattern Matching 3/13/2003 10:44 AM

9

MoreStuff v 1.1 25

KMP Failure Function
Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself
The failure function F(j) is
defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]
Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] ≠ T[i]
we set j ← F(j − 1)

1
a
3

2
b
4 5210j

3100F(j)
aabaP[j]

x

j

. . a b a a b

a b a a b a

F(j − 1)

a b a a b a

MoreStuff v 1.1 26

The KMP Algorithm
The failure function can be
represented by an array and
can be computed in O(m) time
At each iteration of the while-
loop, either

i increases by one, or
the shift amount i − j
increases by at least one
(observe that F(j − 1) < j)

Hence, there are no more
than 2n iterations of the
while-loop
Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)
F ← failureFunction(P)
i ← 0
j ← 0
while i < n

if T[i] = P[j]
if j = m − 1

return i − j { match }
else

i ← i + 1
j ← j + 1

else
if j > 0

j ← F[j − 1]
else

i ← i + 1
return −1 { no match }

MoreStuff v 1.1 27

Computing the Failure
Function

The failure function can be
represented by an array and
can be computed in O(m) time
The construction is similar to
the KMP algorithm itself
At each iteration of the while-
loop, either

i increases by one, or
the shift amount i − j
increases by at least one
(observe that F(j − 1) < j)

Hence, there are no more
than 2m iterations of the
while-loop

Algorithm failureFunction(P)
F[0] ← 0
i ← 1
j ← 0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i] ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{use failure function to shift P}
j ← F[j − 1]

else
F[i] ← 0 { no match }
i ← i + 1

Pattern Matching 3/13/2003 10:44 AM

10

MoreStuff v 1.1 28

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

0
c
3

1
a
4 5210j

2100F(j)
babaP[j]

