Shortest Paths

Shortest Paths v1.0 1

Outline and Reading

Weighted graphs (8§7.1)
= Shortest path problem
= Shortest path properties
Dijkstra’s algorithm (§7.1.1)
= Algorithm
= Edge relaxation
The Bellman-Ford algorithm (§7.1.2)
Shortest paths in dags (§7.1.3)
@ All-pairs shortest paths (§7.2.1)

Shortest Paths v1.0 2

In a weighted graph, each edge has a weight (an associated
numerical value)

Edge weights may represent, distances, costs, etc.

Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

Shortest Paths v1.0 3

‘Shortest Path Problem

Given a weighted graph and two vertices and v, we want to
find a path of minimum total weight of a path between « and v.
= Length (or weight) of a path is the sum of the weights of its edges.
» Distance of u from v is the length of a shortest path from u to v.
» Example: Shortest path between Providence and Honolulu
» Applications
= Internet packet routing
= Flight reservations
= Driving directions

® @

@

Shortest Paths v1.0 4

Property 1:
A subpath of a shortest path is itself a shortest path

Property 2:
There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

Shortest Paths v1.0 5

Single-Source Shortest Paths
Problem

Given a weighted graph and one source vertex s,
find the shortest path tree T.

Tis a tree rooted at s representing shortest path
from s to every other vertex v in the graph.

= (The simple path from s to v in tree T is a shortest path from
stov)

Shortest Paths v1.0 6

‘Dijkstra’s Algorithm ?\ 7

|
¥

4 Solves single-source # We grow a “cloud” of vertices,
shortest path problem beginning with s and eventually

covering all the vertices
“cloud” of vertices contains
shortest path tree

@ Store d(v) at each vertex v; d(v)

Also computes distances
from source vertex s to
other vertices v

Is a greedy algorithm represents the distance of v
Assumptions: from s in the “cloud + adjacent
= the graph is connected vertices” subgraph
= the edge weights are % Also track edge used to get to v
nonnegative % At each step
= (the edges are = Add outside vertex u with the
undirected) smallest distance d(u) into cloud

Update distance labels (=
several edge relaxation steps)

Shortest Paths v1.0 7

Shortest Paths v1.0 8

'Example (cont.)

Shortest Paths v1.0 9

Edge Relaxation

*

Consider an edge e =(u,z)
such that

= uis the vertex most recently .

added to the cloud 1

= zis notin the cloud

&

The relaxation of edge ¢
updates distance d(z) as
follows:

d(z) < min{d(z),d(u) + weight(e)}

Shortest Paths v1.0 10

Why Dijkstra’s Algorithm
‘Works

e Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= Suppose it didn't find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

= When the previous node, D, on the

true shortest path was considered,

its distance was correct.

But the edge (D,F) was relaxed at

that time!

= Thus, so long as d(F)>d(D), F's
distance cannot be wrong. That is,
there is no wrong vertex.

Shortest Paths v1.0 11

Dijkstra’s Algorithm

o Algorithm Dijkstra (G, s)
@ A prlorlt_y queue _StOreS 0O « new heap-based priority queue
the vertices outside the for all v € G.vertices()
cloud if v=sthen setDistance(v,0)
= Key: distance else setDistance(v, ©)
= Element: vertex [<’—LQ.il:\‘e(rt(lg)ell)i\‘tum'e(v), v)
setLocator(v,.
Locator-based methods setParentEdge(v, D)
w insert(k,e) returns a while —Q.isEmpty()
locator u « Q.removeMin()
= replaceKey(l,k) changes for all ¢ € G.incidentEdges(u)
the key of an item { relax edge e }
We store three labels 7 < G.opposite(u,e)
with each vertex: r < getDistance(u) + weight(e)
= Distance (d(v) label) if r <getDistance(z)
locator i orit setDistance(z,r)
" o;:uzr In priority O.replaceKey(getLocator(z),r)
q setParentEdge(z,e)

= Edge used to get there
(parent edge) Shortest Paths v1.0 12

‘Analysis 1

% Graph operations using adjacency list structure: O(m) time

= incidentEdges iterates through incident edges once for each vertex:
Label operations: O(m) time

= We set/get the labels of vertex z O(deg(z)) times

= Setting/getting a label takes O(1) time
% Priority queue operations (heap-based): O(n log n + m log n)

= Insert and remove happens once for each vertex; at cost O(log n)

time each.

= key of any vertex w modified up to deg(w) times, at cost O(log n) time
Dijkstra’s algorithm runs in O(m log n) time provided

= the graph is connected

= graph represented by the adjacency list structure

= we use heap-based PQ

Shortest Paths v1.0 13

Analysis 2

Graph operations using adjacency list structure: O(m) time

= incidentEdges iterates through incident edges once for each vertex:
Label operations: O(m) time

= We set/get the labels of vertex z O(deg(z)) times

= Setting/getting a label takes O(1) time
Priority queue operations (unsorted sequence): O(n? + m)

= Insert and remove happens once for each vertex; at cost O(n) time
each

= key of any vertex w modified up to deg(w) times, at cost O(1) each
time

Dijkstra’s algorithm runs in O(n?) time provided

= the graph is connected

= graph represented by the adjacency list structure

= we use unsorted-sequence based PQ

Shortest Paths v1.0 14

Why It Doesn't Work for
Negative-Weight Edges

@ Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess |
up distances for vertices already
in the cloud. !

C’s true distance is 1, but
it is already in the cloud
with d(C)=5!

Shortest Paths v1.0 15

Works even with negative-
weight edges (on directed
graphs)
4 Iteration i finds all shortest
paths that use i edges.

#® Running time: O(nm).
4 Can be extended to detect
a negative-weight cycle if it
exists

= How?

Algorithm BellmanFord(G, s)
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ®)
for i < I to n-1 do
for each ¢ € G.edges()
{ relax edge e }
u <« G.origin(e)
7 < G.opposite(u,e)
r « getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)

Shortest Paths v1.0 16

Bellman-Ford Example

Nodes are labeled with their d(v) values

Shortest Paths v1.0 17

4 Only for DAGs

4 Works even with
negative-weight edges

Uses topological order

Doesn't use any fancy
data structures

4 Is much faster than
Dijkstra’s algorithm

4 Running time: O(n+m).

'DAG-based Algorithm

Algorithm DagDistances(G, s)
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
Perform a topological sort of the vertices
for u <~ 1tondo {in topological order}
for each ¢ € G.outEdges(u)
{ relax edge e }
z « G.opposite(u,e)
r « getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)

Shortest Paths v1.0 18

DAG Example

Nodes are labeled with theirld(v) values

All-Pairs Shortest Paths

4 Find the distance between every pair of vertices in a
weighted directed graph G.

4 number vertices in G: 1,2,..., n

4 Store as a matrix D, so D[i,j] represents cost of
shortest path from i to j.
4 Distance may be infinite, meaning no path.
4% Possible solutions:
= Use Dijkstra’s algorithm n times, one for each vertex
+ Only works if no negative edges
+ takes O(nmlog n) time.
= Use Bellman-Ford n times, one for each vertex
+ takes O(n2m) time.

» O(n3) time with Floyd-Warshall
Shortest Paths v1.0 20

Floyd-Warshall’s Algorithm

Extension of reachability algorithm
Based on similar recurrence:
= Let D,[i,j] denote cost of shortest path from i to j
whose intermediate vertices are a subset of
{1,2,..k}.
= Then D,[i,i] =
min(Dy1[i,31, Dy4[i,K] + Dy 4[k,)-
What is Dg[i,j]? What is D[i,j]?

Shortest Paths v1.0 21

Floyd-Warshall All-Pairs
shortest paths

K Computing D, from D, , :

4 For each pair of vertices (i,j) in D,_; set D[i,j]
to minimum of
= Dy, [i,j] (previous shortest path)

= Dy [i,k] + Dy4[k,i] (new possible shortest path going
through k

Uses only vertices numbered 1,...,k

Uses only vertices

numbered 1,...,k-1 Uses only vertices

numbered 1,...,k-1

Shortest Paths v1.0 22

All-Pairs Shortest Paths usmg
Floyd-Warshall

Algorithm AllPair(G) {assumes vertices 1,....n}
for all vertex pairs (i,j)

4 Non-recursive ifi=j
; D,lii] < 0
dynamlc ! . else ’éf (iyj) is an edge in G
programming version D, lij] < weight of edge (i)
of Floyd-Warshall else
) Dylij] « + e
& O(n3) time for k L‘l to n do

for i< Itondo
forj < 1 ton do

Dyliyj] = min{Dy[ijl, Dy li, k14D [kj]}
return D,

Uses only vertlces numbered 1,...k

Uses only vertices ~Xq
numbered 1,... k-1 Uses only vertices

numbered 1,... k-1
Shortest Paths v1.0 23

