Computing and Software Systems 343, Winter 2003
Mathematical Principles of Computing II

Assignment 6. Version 1.1.

Due Thursday, Feb. 27.

This is a programming assignment.

In the zip file, you will find all the files necessary to get you started.

This is a programming only assignment. You will need to turn in the .java files you wrote/changed via blackboard’s drop box. You will also need to turn in a hard copy of

these .java files. Please do not turn in hard copies of files you did not change. Seeing as there will be many files to turn in via blackboard, it would be preferable to turn in a single .zip file containing everything you worked on into blackboard’s digital drop box.

Part 1. Implement a simplified version of the Graph adt (called SimpleGraph). SimpleGraph includes the following methods:

numVertices, numEdges, vertices, edges, aVertex, incidentEdges, opposite,

insertEdge, insertVertex.

You must use the adjacency list structure. You do not need to make Vertex and Edge objects contain references to the node that contains them (They do not need to be Position objects). It is probably easiest to use Java’s LinkedList class extensively.

Part 2. Extend the DFS class to implement the following:

a) A “print-out DFS traversal”, that prints out the name of each node and edge the first time they are visited.

b) A “connected components print-out” that prints the name of each node and edge followed by the connected component number it belongs to.

You will also need to write code that calls your two DFS traversals. You may

add code to GraphMain to do this.

Here is a listing of the files provided:

Edge.java, Vertex.java, and SimpleGraph.java: skeleton java files that list the methods you need to implement.

DFS.java: abstract DFS Template class

ConnectivityTester.java: one example showing how to extend DFS to test whether a graph is connected or not.

FindPathDFS.java: one example showing how to extend DFS to find a path between two vertices

GraphMain.java: example main program that runs ConnectivityTester and FindPath on a graph loaded in from text file testgraph.txt

testgraph.txt : simple text description of a graph

GraphInput.java: methods that loads a graph from a text file. You do not need to understand how the methods in this file works for this assignment.

InputLib,java, KeyboardReader.java: Needed by GraphInput. You do not need to look at these.

ExampleProgram: Folder containing .class files that shows a working SimpleGraph adt implementation running with GraphMain. In this example program, GraphMain has been modified to print out a DFS traversal, as well as a connected component printout.

Extra Credit:

Implement Topological Sort by extending the DFS template method. Since you need a directed graph ADT for this, you have several options: 1) you may extend your graph ADT to handle directed edges, extend the abstract DFS class to handle directed edges, and implement topological sort on top of that. 2) (probably slightly easier option) You may use JDSL (Java data structures library) and the directed graph ADT they provide, along with the DFS template class that they provide. You may not use the TopologicalSort class defined in JDSL. There is a link to the JDSL classes on the website.

Your topological sort should return a list of vertices in a topologically sorted order. You will need to write code that creates some directed graph, as well as runs your topological sort in order to test your program.

