Computing and Software Systems 343, Winter 2003
Mathematical Principles of Computing II

Assignment 7. Version 1.0.

Due Thursday, March 6.

1) R-6.5 from the book

2) R-6.7

3) R-6.9

4) During a DFS traversal, we can label each vertex with two timestamps: a discover time, representing the moment when the vertex was first discovered, and a finish time, representing the moment immediately after all incident edges have been explored. The timestamp starts at one, and gets incremented every time it is used. Here is pseudocode that stores the discover and finish times for each vertex in two arrays, discoverTime[] and finishTime[], indexed by vertex.

[image: image1.wmf]Algorithm

DFS_Sweep

(

G

)

Input

graph

G

 Output

discoverTime

 and

finishTime

 arrays, indexed by vertex

label all vertices as

 UNEXPLORED

label all edges as

 UNEXPLORED

create

discoverTime

 and

finishTime

arrays

 time

¬

1

 for all

v

Î

 G.vert

ices

()

if

 v

is

 ?UNEXPLORED

DFS

(

G, v

)

return

discoverTime

 and

finishTime

arrays

Algorithm

DFS

(

G, v

)

label

 v as VISITED

 discoverTime[v]

¬

 time

 time++

 for all

e

Î

 G.incidentEdges

(

v

)

if

e

 is

UNEXPLORED

w

¬

 opposite

(

v,e

)

label

 e as VISITED

if

w

 is

UNEXPLORED

DFS

(

G, w

)

 finishTime[v]

¬

 time

 time++

Consider a DFS_Sweep traversal of some graph G. We know that for any vertex v, that discoverTime[v] < finishTime[v].

a. Suppose we have a tree edge from vertex u to vertex v in the DFS forest produced by the traversal. Is discoverTime[v] greater than or less than discoverTime[u]? Is finishTime[u] greater than or less than finishTime[v]?

b. How can we use the discover and finish times to classify an edge from u to v as tree, forward, back, or cross? Make a table with one column listing possible orderings between discoverTime[u], discoverTime[v], finishTime[u], and finishTime[v]. Then fill in the second column of the table with the appropriate edge type for directed edge (u,v) satisfying the constraints in the first column.

5) C-6.13

Extra Credit: C-6.9. The definition of eccentricity should be corrected to: for a free tree T and a node v, the eccentricity of v is the length of a longest simple path from v to any other node of T. (They omit the word simple, making their definition incorrect).

The following is not necessary for solving the above problem, but is useful to know.

The general way of defining the center for any graph G:

1. The distance between vertex v and vertex w is the length of the shortest path between v and w.

2. The eccentricity of vertex v is the maximum distance between v and any other vertex of G.

3. The center of G is a node of G with minimum eccentricity.

Note that in a free tree T, for any vertices v and w, there is only one simple path between v and w. (Why?). Thus, for a tree T, the eccentricity of v is the length of the longest simple path from v to some other vertex w of T, as stated above.

_1107793399.doc
Algorithm DFS_Sweep(G)

 Input graph G

 Output discoverTime and finishTime arrays, indexed by vertex

 label all vertices as UNEXPLORED

 label all edges as UNEXPLORED

 create discoverTime and finishTime arrays

 time (1

 for all v (G.vertices()

if v is UNEXPLORED

DFS(G, v)

 return discoverTime and finishTime arrays

Algorithm DFS(G, v)

 label v as VISITED

 discoverTime[v] (time

 time++

 for all e (G.incidentEdges(v)

if e isUNEXPLORED

w (opposite(v,e)

label e as VISITED

if w isUNEXPLORED

DFS(G, w)

 finishTime[v] (time

 time++

