TCSS 343a Final

Monday, December 16, 2002

Definitions:

1) Give definitions for the following: (5 pts for each definition):

a) NP

b) Routing Table

c) Strongly Connected

Short Problems:

2) (5 pts) Let arrays D[] and F[] represent the discover and finish times for all nodes in a directed graph, as computed by DFS. Suppose that D[2] = 3, F[2] = 12, D[3] = 4, F[3] = 7. (So D[2] is the discover time for node 2). Is edge (3,2) a descendant edge, cross edge, or back edge?

3) (10 pts) Recall that for Prim’s algorithm with a priority queue, the run-time cost can be expressed as n getMin, n deleteMin, 2m insert, 2m getPriority, and 2m decreaseKey calls (n is the number of nodes, m is the number of edges). Suppose you implemented a priority queue where, on input size n, getMin takes 3 operations, deleteMin takes 2 log n operations, insert takes log n operations, and both getPriority and decreaseKey take 4 operations each. How many operations in Prim’s algorithm for your priority queue? What is the asymptotic order?

4) (10 pts) Consider the bin packing decision problem: As input, we are given k bins, each with capacity 1.0. We are also given n items with sizes s1, s2, ..., sn. Each size is a number betweeen 0.0 and 1.0. The decision problem asks, is there a way of fitting the n items into the k bins? No bin may be filled beyond its capacity; thus if item i and item j with sizes si and sj are placed in one bin, then si + sj ≤ 1.0.
Explain why this bin packing problem is in NP.

Longer Problems

5) (15 pts) Suppose you wrote a fancy algorithm for finding the optimal bin packing solution and the cost of the algorithm was given by the following recurrence equation:
for n ≥2,
T(n) = n T(n-1) + T(n-2) + n2

T(1) = 2

T(0) = 1
Prove by induction that T(n) ≥ 2n for all n.

6) (20 pts) The bin packing optimization problem is to find the least number of bins of capacity 1.0 necessary to store all items given as input. A simple greedy approximation solution to the bin packing problem is to go through the items in order, packing as many as possible into the current bin. Once the next item no longer fits in the current bin, move on to the next bin.
Write an algorithm that computes the number of bins used by this greedy solution to the bin packing problem. The specification is below:

int greedybinpack(double [] sizes);
/* sizes is array that stores sizes of each item;
 return the number of bins of capacity 1.0 that are used in the greedy solution. */

Here is an example: Suppose sizes = {.5, .6, .8, .2, .1, .1}
Then, the above greedy solution puts .5 into the first bin, .6 into the second, .8 and .2 into the third bin, and .1 and .1 into the fourth bin. Thus, the algorithm should return 4, representing that 4 bins are needed.

YOU MAY CHOOSE TO DO EITHER PROBLEM 7 OR PROBLEM 8

(ONLY ONE OF THEM IS REQUIRED)

7) // A partially written solution to the Traveling Salesman Problem.
// returns a tour going through nodes startindex, startindex+1, ...,
// stopindex. this tour consists of a array of numbers representing the
// nodes gone through in the tour. (Assumed that first and last node
// of the returned tour is not duplicated).
// G is the input adjacency matrix
int [] findtourrec(double [][]G, int startindex, int stopindex) {
 if (stopindex – startindex < 6) return findoptimaltour(G, startindex,

 stopindex);
 else {

 midindex = (stopindex + startindex) / 2;
 int [] tour1 = findtourrec(G, startindex, midindex);

 int [] tour2 = findtourrec(G, midindex+1, stopindex);
 return mergetours(G, tour1, tour2);
 }

// merge two smaller tours together into one bigger tour
// do a local (non-exhaustive) search for mincost tour.
int [] mergetours(int [][]G, int [] tourA, int[] tourB) {

int newLength = tourA.length + tourB.length;

int[] temptour = new int(newLength);

int[] mincosttour = new int(newLength);

double mincost = Infinity;

int i,j,k, h;

// for each pair of nodes, one from tourA and one from tourB.

for (i=0; i < tourA.length; i++)

for (j=0; j < tourB.length; j++) {

 //merge tours by breaking tourA at node i and tourB at node j

 /*1*/

for (k=0; k <= i; k++)

temptour[k] = tourA[k];

 /*2*/

for (h=j+1; h <tourB.length; h++,k++)

temptour[k] = tourB[h];

 /*3*/

for (h=0; h<=j ; h++, k++)

temptour[k] = tourB[h];

 /*4*/

for (h=i+1;h<tourA.length; h++,k++)

temptour[k] = tourA[h];

// calculate tour cost, including edge that makes cycle

tempcost = costOfPath(G,temptour) +

 G[temptour[0]][temptour[newLength-1]];

if (tempcost < mincost) { // save mincosttour

mincost = tempcost;

for (k=0; k < newLength; k++)

 mincosttour[k] = temptour[k];

}

return mincosttour;
}

double costOfPath(int G[][], int[]path); // returns cost of path in graph G.

The initial call to findtourrec would be findtourrec(G,0,G.length-1);

a) (5 pts) Is this a greedy, divide-and-conquer, or optimal search algorithm? Explain why.

b) (15 pts) Analyze the run-time cost of mergetours, when tourA has length A, and tourB has length B. Count lines of code executed; your answer should be in terms of A and B. Assume that costOfPath uses 2n lines of code on input size n.
Here are some questions you can answer to ensure some partial credit: How many times is costOfPath called? How many assignments to temptour[] are made in one pass from line 1 through line 4?

YOU MAY CHOOSE TO DO EITHER PROBLEM 7 OR PROBLEM 8

(ONLY ONE OF THEM IS REQUIRED)
8) Let E[] be an array of n distinct integers. Define a subsequence of E to be a subset of the numbers in E, in order from left to right. A subsequence is not necessarily contiguous. Thus, if E contains (11, 17, 5, 8, 6, 4, 7,12), then (11, 5, 8) is a subsequence (11, 5 and 8 appear in the proper order relative to E), whereas (11, 8, 5) is not a subsequence.
Each number in an increasing subsequence is greater than the numbers to its left. In the above example, the longest increasing subsequence is (5, 6, 7, 12).
Here is code that recursively computes the length of the longest increasing subsequence in E. The subproblem it solves is described on the next page.

// returns length of longest increasing subsequence of

// sequence E[j], E[j+1], .., E[n-1] that must start with E[j].

int lengthOfLIS(int[]E, int j) {

int k;

int n = E.length;

int subproblength;

int longestsofar = 1;

for (int k=j+1; k < n; k++) {

if (E[j] < E[k])) { // try including E[k] into sequence

subproblength = 1 + lengthOfLIS(E,k);

if (subproblength > longestsofar)

longestsofar = subproblength;

}

}

return longestsofar;

}

int mainComputeLength(int[]E) {

int longestsofar = 0;

for (int k =0; k < E.length; k++)

longestsofar = max(longestsofar, lengthOfLIS(E,k));

return longestsofar;

}

In the initial example above, lengthOfLIS(E,0) returns 2, because starting with E[0]=11, the longest increasing subsequence containing 11 is (11,17), which is length 2. Similarly, lengthOfLIS(E,1) returns 1 for the subsequence (17), and lengthOfLIS(E,3) returns 2, for the subsequence (8,12).

a) (5 pts) On input E = (10, 2, 5, 12, 8 , 15), what does lengthOfLIS(E,0) return?

b) (15 pts) Show how to rewrite the above recursive algorithm using dynamic programming.

9) a) (10 pts) Use Dijkstra’s algorithm to find the shortest-path tree from source vertex 0 on the following directed graph:

[image: image1.wmf]0

3

5

1

2

4

2

.

0

4

.

0

3

.

0

7

.

0

2

.

0

5

.

0

3

.

0

2

.

0

6

.

0

3

.

0

4

.

0

6

.

0

1

.

0

In addition to drawing the shortest path tree, you must clearly indicate the order in which the edges are added to the tree to get full credit.

b) (5 pts) Recall that in the implementation, the parent array is used to keep track of a node’s parent in the tree. parent[0] = -1 because node 0 has no parent. Also, the distance array keeps track of the cost of the shortest path to each node from the source node. What are the contents of the parent array and the distance array after running Dijkstra’s algorithm on the above example?

c) (5 pts) There are three shortest paths (all of the same total cost) from 2 to 4. List these three paths.

d) (5 pts) If we run Dijkstra’s algorithm with source vertex 2, which of the shortest paths to vertex 4 could it return? Explain in detail how you got your answer.

_975383947.doc

0

3

5

1

2

4

2.0

4.0

3.0

7.0

2.0

5.0

3.0

2.0

6.0

3.0

4.0

6.0

1.0

