TCSS 343b Final

NAME:

Thursday, December 19, 2002

Definitions:

1) Give definitions for the following: (5 pts for each definition):

a) Polynomially bounded

b) Minimum spanning tree

c) a path (in a graph)

Short Problems:

2) (5 pts) Let arrays D[] and F[] represent the discover and finish times for all nodes in a directed graph, as computed by DFS. Suppose that D[2] = 3, F[2] = 6, D[3] = 8, F[3] = 13. (So D[2] is the discover time for node 2). Is edge (3,2) a descendant edge, cross edge, or back edge?

3) (10 pts) Recall that for Prim’s algorithm with a priority queue, the run-time cost can be expressed as n getMin, n deleteMin, 2m insert, 2m getPriority, and 2m decreaseKey calls (n is the number of nodes, m is the number of edges). Suppose you implemented a priority queue where, on input size n, getMin takes 2 operations, deleteMin takes 3 log n operations, insert takes log n operations, and both getPriority and decreaseKey take 4 operations each. How many operations in Prim’s algorithm for your priority queue? What is the asymptotic order?

4) (10 pts) Consider the subset sum decision problem: As input, we are given a number C, and given n objects integer sizes x1, x2, ..., xn. The decision problem question is “Is there a subset of the objects whose sizes add up to exactly C?”
Explain why this subset sum problem is in NP.

Longer Problems

5) (15 pts) Suppose you wrote a fancy algorithm that solves the subset sum problem and the cost of the algorithm was given by the following recurrence equation:
for n ≥2,
T(n) = n2 T(n-1) + n T(n-2) + 2n

T(1) = 1

T(0) = 1
Prove by induction that T(n) ≥ n! for all n.

6) (20 pts) Recall that in the line-breaking problem, we are given an integer array of n word lengths (w[0], w[1], …, w[n-1]) and a maximum line width L. We wish to place the words into lines to minimize the total penalty. The words must be placed contiguously and the length of the words on each line cannot be greater than the line width. This means that if words w[i] up to w[j] are placed on a line, then

[image: image1.wmf]å

=

£

j

i

k

L

k

w

]

[

.
The penalty for this line is X3, where
[image: image2.wmf]å

=

-

=

j

i

k

k

w

L

X

]

[

 is the number of extra spaces on each line. The total penalty is the sum of the penalties from each line except for the last line (the last line is defined to have no penalty). A solution to the line-breaking problem computes the lastWord array that stores the index of the last words on each line (lastWord[i] = j) means that the last word placed in line i is word j. Write an algorithm that is given the line width L, the array w of word lengths, and the array lastWord, and computes the total penalty incurred by line-breaking according to the lastWord array.

int computepenalty(int L, int []w, int [] lastWord);
/* L is line width; w is array of word lengths; lastWord is array
 that stores which word is the last word in each line. Returns
 total penalty for this method of line-breaking */
 */

Here is a short example: Suppose L = 10, and w = {6, 4, 7, 4, 5, 4}, and lastWord = {1,2,4,5}. Then line 0 has penalty (10-(6+4))3, line 1 has penalty (10-7)3, line 2 has penalty (10-(4+5))3, and the last line (line 3) has no penalty. Thus, computepenalty should return 28 in this case.

YOU MAY CHOOSE TO DO EITHER PROBLEM 7 OR PROBLEM 8

(ONLY ONE OF THEM IS REQUIRED)

7) // A partially written solution to the Traveling Salesman Problem.
// given an input adjacency matrix G
// and an integer array toursofar that represents a tour through
// some subset of the nodes of G.
// expands toursofar by changing it to go through one additional node
// that is not yet in toursofar.
// returns this new tour that is one step longer.
// each tour consists of a array of numbers representing the
// nodes gone through in the tour. Since it is a tour, the first and last
// integer in the array will have the same value.
int [] expandtour(double [][]G, int [] toursofar) {

int[] newtour;

int pathlength, n, i,j, besttourindex, bestnewnode;

boolean [] mark;

n = G.length; pathlength = toursofar.length;

newtour = new int[pathlength+1];

mark = new boolean[n];
 // intialize mark array so marked nodes have been visited in toursofar

for (i=0; i < n; i++) mark[i]=false;

for (i=0; i < pathlength; i++) mark[toursofar[i]] = true;

double mincost = Infinity;

double tempcost;
 // for each node i not in toursofar

for (i=0; i < n ; i++)

 if (mark[i] == false)

 for (j=1; j < pathlength; j++) { // check for best place to insert i

tempcost = G[toursofar[j-1]][i] + G[i][toursofar[j]];

if (tempcost < mincost) {

 mincost = tempcost;

 besttourindex = j;

 bestnewnode = i;

}

 }
// now insert bestnewnode into tour at postion besttourindex

for (i=0; i < besttourindex; i++)

newtour[i] = toursofar[i];

newtour[besttourindex] = bestnewnode;

for (i=besttourindex; i < pathlength; i++)

newtour[i+1] = toursofar[i];

return newtour;
 }

// calls expandtour many times to find a tour. Returns best tour found.
int [] mainfindtour(int [][]G) {

double mincost = Infinity;

int i,j, k,n;

int []partialtour;

int []mincosttour;

n = G.length;

mincosttour = new int[n+1];

initialtour = new int[2];

for (i=0; i < n; i++) {

 partialtour[0] = i; partialtour[1]=i;

for (j=1; j < n; j++) { // add nodes to partialtour

 partialtour = expandtour(G,partialtour);

}

// calculate tour cost

tempcost = costOfPath(G,partialtour);

if (tempcost < mincost) { // save mincosttour

mincost = tempcost;

for (k=0; k < n+1; k++)

 mincosttour[k] = temptour[k];

}

return mincosttour;
}

double costOfPath(int G[][], int[]path); // returns cost of path in graph G.

a) (5 pts) Is this a greedy, divide-and-conquer, or optimal search algorithm? Explain why.

b) (15 pts) Analyze the run-time cost of mainfindtour, when there are n nodes (so G is an n by n matrix). Count lines of code executed. Assume that costOfPath uses 2n lines of code on input size n.
Here are some questions you can answer to ensure some partial credit: How many times is expandtour called? What is the cost of expandtour when given a tour of size k? How many assignments to tempcost are made inside mainfindtour? How many assignments to tempcost are made inside expandtour?

YOU MAY CHOOSE TO DO EITHER PROBLEM 7 OR PROBLEM 8

(ONLY ONE OF THEM IS REQUIRED)
8) Let E[] be an array of n distinct integers. Define a subsequence of E to be a subset of the numbers in E, in order from left to right. A subsequence is not necessarily contiguous. Thus, if E contains (11, 17, 5, 8, 6, 4, 7,12), then (11, 5, 8) is a subsequence (11, 5 and 8 appear in the proper order relative to E), whereas (11, 8, 5) is not a subsequence.
Each number in a decreasing subsequence is less than the numbers to its left. In the above example, there are 2 longest decreasing subsequences, both of length 4: (11, 8, 6, 4), and (17, 8, 6, 4).
Here is code that recursively computes the length of the longest decreasing subsequence in E. The subproblem it solves is described below.

// returns length of longest decreasing subsequence of

// sequence E[0], E[1], .., E[j] that must end with E[j].

int lengthOfLDS(int[]E, int j) {

int k;

int n = E.length;

int subproblength;

int longestsofar = 1;

for (int k=0; k <j; k++) {

if (E[k] > E[j])) { // try including E[k] as the first

 // number before E[j] in the sequence

subproblength = 1 + lengthOfLDS(E,k);

if (subproblength > longestsofar)

longestsofar = subproblength;

}

}

return longestsofar;

}

int mainComputeLength(int[]E) {

int longestsofar = 0;

for (int k =0; k < E.length; k++)

longestsofar = max(longestsofar, lengthOfLDS(E,k));

return longestsofar;

}

In the initial example above, lengthOfLDS(E,0) returns 1, representing the sequence (11). lengthOfLDS(E,2) returns 2, because ending with E[2]=5, the longest decreasing subsequence containing 5 is (11,5) or (17,5), both of which have length 2. Similarly, lengthOfLDS(E,4) returns 3 for either (17,8,6) or (11,8,6); and lengthOfLDS(E,7) returns 2, for the subsequence (17,12).

a) (5 pts) On input E = (10, 2, 5, 12, 9, 8, 15, 6), what does lengthOfLDS(E,5) return?

b) (15 pts) Using dynamic programming, rewrite the recursive algorithm for computing the longest decreasing sequence.

9) a) (10 pts) We will use Floyd’s algorithm to find both the distance matrix and the routing table for the following initial matrix:

[image: image3.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

¥

¥

¥

¥

¥

¥

¥

¥

¥

0

2

.

1

1

.

1

0

3

.

7

2

.

9

0

4

.

1

1

.

8

0

.

1

0

3

.

3

5

.

2

0

.

6

5

.

1

0

Suppose you have already gone through the outer-loop implementation of Floyd’s 3 times, and computed D3 and RT3, the distance matrix and routing table after the 3rd iteration through the loop. Make the next step in the computation to get D4 and RT4. (Note: we are assuming that nodes are numbered from 1 to 5, so that the top right corner is for getting from node 1 to node 5.)

[image: image4.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

0

7

.

3

7

.

3

7

.

2

2

.

1

1

.

1

0

8

.

9

8

.

8

3

.

7

2

.

9

2

.

7

0

4

.

1

7

.

4

2

.

10

8

.

5

0

.

1

0

3

.

3

7

.

11

5

.

2

5

.

2

5

.

1

0

3

D

,
[image: image5.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

5

1

1

1

1

5

4

1

1

1

5

2

3

2

2

3

1

3

2

1

2

4

2

2

1

3

RT

b) (5 pts) This is the final distance and routing table for the computation above According to this final routing table, what is the shortest path from node 3 to node 4? And what is the shortest path from node 4 to node 3? What are the costs of these two paths?

[image: image6.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

0

7

.

3

7

.

3

7

.

2

2

.

1

1

.

1

0

8

.

4

8

.

3

3

.

2

3

.

8

2

.

7

0

4

.

1

7

.

4

9

.

6

8

.

5

0

.

1

0

3

.

3

6

.

3

5

.

2

5

.

2

5

.

1

0

D

,

[image: image7.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

=

5

1

1

1

1

5

4

5

5

5

2

2

3

2

2

1

1

3

2

1

4

4

2

2

1

RT

c) (5 pts) There are three shortest paths (all of the same total cost) from 1 to 3 in the following graph. List these three paths.

[image: image8.wmf]

5

2

4

6

1

3

2.0

4.0

3.0

7.0

2.0

5.0

3.0

2.0

6.0

3.0

4.0

6.0

1.0

d) (5 pts) If we run Floyd’s algorithm, which shortest path from 1 to 3 would it have in the routing table? Explain in detail how you got your answer.

_1101788566.unknown

_1101802427.unknown

_1101804723.unknown

_1101804796.unknown

_1101804270.unknown

_1101799680.unknown

_1101799090.doc

5

2

4

6

1

3

2.0

4.0

3.0

7.0

2.0

5.0

3.0

2.0

6.0

3.0

4.0

6.0

1.0

_1101788521.unknown

