
TCSS 343b

Fall 2002

Midterm

Write the answers to each problem below each question. If you need more space, use the back of each sheet of paper. You should manage your time, and do problems that are easy for you first. 

1) <20 pts> Recall that in a the topological sort problem we are given a directed graph, and we wish to find an ordering of the nodes such that if edge (i,j) is in the graph, then node i is before node j in the ordering. In the topological sort algorithm, we output the nodes in reverse finish time order, where the finish times are calculated by a depth first search on the graph. Note that a node is finished in DFS when all its outgoing edges have been checked. 

a) Let G = (V,E) be a directed graph, where V= {I,J,K,L,M,N,O}, and E = {(I,K),(I,O),(J,I),(J,M),(L,K),(M,O),(N,I), (N,L),(O,K)}. Find the topological ordering that results from running depth first search, assuming the nodes in each adjacency lists are in alphabetical order, and that the array of adjacency lists is also in alphabetical order.  Thus, DFS starts at node I. 

Note: Although showing work is not required, it is strongly recommended in order to ensure partial credit in case you make a mistake. The intermediate steps are: 1) drawing the graph G and  2) computing the discover/finish times for each node in the graph. 

2) Suppose we have an unsorted array A of n elements, and we want to know if the array contains any duplicate elements. 

a) <10 pts> Clearly outline an efficient method for solving this problem. By efficient, I mean your method should use O(n log n) key comparisons in the worst case.

i. [“Outline” means you do not have to provide detailed code, but you need to describe what the steps are. If you use a sorting method, or a slightly modified version of one, you only need to say which method, and you don’t need to provide code for the sorting method]. 

b) <5 pts> What is the asymptotic order of the running time of your method (of part a) in the worst case? Clearly explain how you obtain your result. 

c) <10 pts> Suppose we know that the n elements are integers from the range 1, 2, …, 2n, so that operations besides comparing keys may be done. You may also assume that n < 231. Outline an efficient method for solving this same problem that is specialized to use this information. For your algorithm, we measure the performance by counting the number of times each integer from the array is accessed. Under this metric, the worst-case cost your algorithm should have an asymptotic order lower than ((n log n).

d) <5 pts> What is the asymptotic order of the running time of your alternative method (of part c) in the worst case? Clearly explain how you obtain your result.

The next two questions are about the following program. It is a divide and conquer method for computing the sum of a subsequence of the floating-point numbers inside an array of doubles. A call subseq_sum(E,i,j) should return the sum of the entries of E between at all indexes between i and j, including i and j.

/** Preconditions: E is an array of doubles containing k numbers, 

  *                                  E[0], E[1], … E[k-1]. 

  *


i and j are integers satisfying 
0 ( i ( k-1 and

  *






0 ( j ( k-1.

  *  Postconditions: You provide them!

  */

double subseq_sum(double [] E, int i, int j) {

/*1*/
if (j < i) {

/*2*/

return 0.0;

}

/*3*/
else if (j==i) {

/*4*/

return E[i];

}

/*5*/
else {

/*6*/

int mid = (i + j)/2; 

/*7*/

double leftsum = subseq_sum(E,i,mid);

/*8*/

double rightsum = subseq_sum(E,mid+1,j);


/*9*/

return leftsum + rightsum;

}




}

e) <5 pts> What are the correct postconditions for this algorithm? (What is true about the return result for subseq_sum?) 

f) <5 pts> Suppose you wanted to prove the correctness of this algorithm using induction on n, the number of array entries that you are summing up. What is the value of n in terms of the variables i and j? 

g) <10 pts> Let Sn be the statement that subseq_sum satisfies the postcondition when it is called with parameters that imply a size of n. Of the following 5 statements below, choose the ones that accurately describe what a valid correctness proof for this algorithm could show in the inductive step (there may be more than one). Explain your reasoning: 

i. for all n ≥ 1, Sn-1 implies Sn.  

ii. for all n > 1, Sn-1 implies Sn
iii. for all n > 1, Sn-2 and Sn-1 imply Sn.

iv. for all n > 1, Sn/2 implies Sn
v. for all n > 1, S1, S2, S3, ..., and Sn-1 imply Sn
h) <10 pts> Now let’s analyze the time complexity for subseq_sum. Let us count the number of additions of variables of type double in the subseq_sum program. (This does not include the additions between integers, such as the i+1 in the else if). Let T(n) denote the worst-case number of additions of type double  when subseq_sum is called with size n. Write a recurrence equation for T(n). Show which line of code each term in your recurrence equation comes from (by referring to the line numbers).  

i) <10 pts> Solve the recurrence equation.

j) <5 pts> What is the asymptotic order of the worst-case time complexity for this problem? 

<5 pts> What is the average case cost for this algorithm? 

3) Consider the ordered array search problem: we are given an array E containing n items, E is sorted, so E[0] < E[1] < … < E[n-1], and we are given a value K to find inside the array. For simplicity, assume E contains integers. We wish to return the value index such that E[index] == K, and the value –1 if K is not present in E.

a) <15 pts> Here is one possible solution: Starting at the beginning of array E, Compare K to every third entry, until K itself or an entry larger than K is found, and then, in the latter case, searches for K among the preceding two entries. Write out this particular algorithm to find K.

b) <10 pts> How many key comparisons (comparisons between K and entries of E) does your algorithm do in the worst case?

c) <10 pts> Suppose you have a size 4 array, and there is an equal chance that the item will be found in any part of the array. Also assume that the item is definitely in the array (there is no chance that the item will not be in the array). Under these assumptions, what is the average-case number of key comparisons required by your algorithm for this array of size 4? 

d) <10 pts> Now assume you have a size n array. Under the same assumptions as part c, what is the average-case number of  key comparisons needed by your algorithm? In addition to the assumption that K is definitely in the array and has probability 1/n of being found in any one of the n positions, you may assume that n is a multiple of 3 to slightly simplify the analysis. 

The master theorem: (not absolutely necessary to use, but you can use it to try to double check some of your results)

[image: image1.png]Theorem 3.17 (Master Theorem) With the terminology of the preceding discussion, the
solution of the recurrence equation

T(n) =b T(%) + f) (3.9)

(restated from Equations 3.3 and 3.8) has forms of solution as follows, where E =
lg(b)/ 1g(c) is the critical exponent defined in Definition 3.6.

1. If f(n)e O (nE—¢) for some positive €, then T'(n) € ©(nf), which is proportional to
the number of leaves in the recursion tree.

2. If f(n) e O (nE), then T(n) € O(f(n) log(n)), as all node depths contribute about
equally.

3. If f(n) € QnETE) for some positive €, and f(n) € O(nE+?) for some § > ¢, then
T (n) € ®(f(n)), which is proportional to the nonrecursive cost at the root of the
recursion tree.
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