Analysis of Algorithms

AITRIL

Input Algorithm

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

Math you need to know

4 Summations (Sec. 1.3.1)
% Logarithms and Exponents (Sec. 1.3.2)
4 properties of logarithms:
logy(xy) = logyx + logpy
log,, (x/y) = logyx - logyy
log,x2 = alogyx
log,a = log,a/log,b
properties of exponentials:
a(b+c) = aba c
abc - (ab)c
. ab /ac = a(b-c)
Proof techniques (Sec. 1.3.3) p = gugp
% Basic probability (Sec. 1.3.4) bc=a g

Analysis of Algorithms v1.6 2

‘Math you need to know

Proofs are

= a sequence of statements

= Each statement is true, based on
+ Definitions
+ Hypotheses
+ Well-known math principles
+ Previous statements

= Statements lead towards conclusion

Analysis of Algorithms v1.6 3

CSS343 winter 03, analysis version

Induction proof

4 Method of proving statements for
(infinitely) large values of n, (n is the
induction variable).

#Math way of using a loop in a proof.

Analysis of Algorithms v1.6 4

Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then x" — y" is divisible by x-y.
Let S, denote “for all x and y, x" — y" is divisible by x-
v

Analysis of Algorithms v1.6 5

'Example induction proof

Prove: for all int x, for all int y, for all int n,
If n is positive, then x» — y" is divisible by x-y.
% Let S, denote “for all x and y, x" — y" is divisible by x-
v
4 Proof with induction:
= Base case: show S,
= Inductive Step: for all k 21, if S, is true, than S,
is true.
OR
Inductive Step: for all k >2, if S, is true, than S
is true.
= S, sometimes called inductive hypothesis.

Analysis of Algorithms v1.6 6

CSS343 winter 03, analysis version

'Example induction proof

% Prove: for all int x, for all int y, for all int n,
If n is positive, then x" — yn is divisible by x-y.
Let S, denote “for all x and y, x" — y" is divisible by x-
v
@ Proof with induction:

Analysis of Algorithms v1.6 7

Pseudocode (§1.1)

Mixture of English, Very High-level
math expressions, and pseudocode:

computer code Algorithm arrayMax(A, n)
Less detailed than a Input array A of n integers
program Output maximum element of A

% Preferred notation for | currentMax « A[0]
describing algorithms Step through each element in A,

4 Hides program design updating currentMax when a
issues bigger element is found

. . eturn currentM
Can write at different [T CHITenEEAT
levels of detail.

Analysis of Algorithms v1.6 8

Pseudocode (§1.1)

Mixture of English, Detailed pseudocode
math expressions, and
computer code Algorithm arrayMax(A, n)

Less detailed than a Input array A of n integers
program Output maximum element of A

% Preferred notation for | currentMax « A[0]
describing algorithms | fori« 1ton-1do

4% Hides program design if A[i] > currentMax then
issues currentMax « Ali]

}) return currentMax
% Can write at different
levels of detail.

Analysis of Algorithms v1.6 9

CSS343 winter 03, analysis version

Pseudocode Details

formatting allowed

Analysis of Algorithms v1.6

Control flow % Method call
= if ... then ... [else ...] var.method (arg [, arg...])
= while ... do ... # Return value
= repeat ... until ... return expression
= for..do.. # Expressions
= Indentation replaces braces &ﬁislfégn%ejn;va)
4 Method declaration - Equality testing
Algorithm method (arg |, arg...]) (like == in Java)
Input ... n? Superscripts and other
Output ... mathematical

Primitive Operations

Basic computations

Examples:
performed by an

Evaluating an

array

Largely independent from
the programming
|anguage method

Analysis of Algorithms v1.6

algorithm expression
. . = Assigning a value
Identifiable in to a variable
pseudocode = Indexing into an

» Calling a method
Returning from a

Estimating performance

4 Count Primitive Operations
= time needed by RAM model

4 Random Access Machine l|§
(RAM) Model has: |
« ACPU -

.
= An potentially unbounded bank of o’
memory cells 2

Each cell can hold an arbitrary 0}
number or character

Memory cells are numbered
Accessing any cell takes unit time

Analysis of Algorithms v1.6

CSS343 winter 03, analysis version

‘Running Time (§1.1)

4 The running time grows with W hest case
¥ 0 | | average case
the mpLIt size. B worst case
4 Running time varies with
different input
4 Worst-case: look at input
causing most operations
4 Best-case: look at input
causing least number of
operations)
1000 2000 3000 4000
Average case: between best Input Size
and worst-case.

120

-
o
-]

@
S

Running Time
P
& 3

N
S

Analysis of Algorithms v1.6 13

Counting Primitive
_Operations (§1.1)

Worst-case primitive operations count, as a
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax < A[0]
fori< lton—1do 1+n
if A[i] > currentMax then 2(n-1)
currentMax < A[i] 2(n—1)
{ increment counter i } 2(n—1)
return currentMax 1
Total 7n-2
Analysis of Algorithms v1.6 14

Counting Primitive
_Operations (§1.1)

Best-case primitive operations count, as a
function of the input size

Algorithm arrayMax(A, n) # operations

currentMax < A[0]
fori< lton—1do 1+n

if A[i] > currentMax then 2(n—1)

currentMax < A[i] 0
{ increment counter i } 2(n—-1)
return currentMax 1
Total 5n
Analysis of Algorithms v1.6 15

CSS343 winter 03, analysis version

Defining Worst [W(n)], Best
:[B(N)], and Average [A(n)]

% Let I, = set of all inputs of size n.
Let t(i) = # of primitive ops by alg on input i.
4 W(n) = maximum t(i) taken over all i in I,
4 B(n) = minimum t(i) taken over all i in I,
@ A(n) = Zp(i)t(i) , p(i) = prob. of i occurring.
icl,
We focus on the worst case
= Easier to analyze
= Usually want to know how bad can algorithm be

= average-case requires knowing probability; often
difficult to determine

Analysis of Algorithms v1.6 16

Experimental Studies (§ 1.6)

4 Implement your algorithm ~ 9°%° .
5 . 8000 - =
4 Run your implementation .
. . . . 000 - "
with inputs of varying size .
and composition 2509 it
. . £ 5000
4 Measure running time of 3 2000 :
your implementation (e. £ !
. 3000 - =
g., with -
. L 2000 - w "
System.currentTimeMillis()) &
1000 - i
Plot the results oL !
1] 50 100
Input Size
Analysis of Algorithms v1.6 17

‘Limitations of Experiments

Implement may be time-consuming and/or
difficult

Results may not be indicative of the running
time on other inputs not included in the
experiment.

4 In order to compare two algorithms, the same
hardware and software environments must be
used

Infeasible to test for correct-
ness on all possible inputs.

Analysis of Algorithms v1.6

CSS343 winter 03, analysis version

‘Theoretical Analysis

4 Uses a high-level description of the algorith
instead of an implementation

@ Characterizes running time as a function of
the input size, n.

Takes into account all possible inputs

4 Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Can prove correctness

Analysis of Algorithms v1.6

Growth Rate of Running Time

#Changing the hardware/ software
environment
» Affects running time by a constant factor;
= Does not alter its growth rate
#Example: linear growth rate of
arrayMax is an intrinsic property of
algorithm.

4,

Analysis of Algorithms v1.6

20

Growth Rates

Growth rates of a1
functions: el
= Linear~n Eeal ~ Quadratic
= Quadratic ~ n? 1E+20 4 —binear
= Cubic ~ n? 2 E:Z
= I1E+14
Inalog-log chart, iEmn
the slope of the line '}.3
corresponds to the 1E+
growth rate of the e
function (for 1E+0
polynomials) 1B+ 1E+2 1E+4 1E+6 1E+8

n

Analysis of Algorithms v1.6

21

1E+10

CSS343 winter 03, analysis version

Constant Factors

1E+26

The growth rate is 124 - --Quadratic
not affected by 1E+22 17— Quadratic
1E+20 - - -Linear
= constant factors or |E+18 - — Linear
= lower-order terms _ :]”:j
= E+
Examples B2
= 1022+ 10%is a linear ”lrlg
function 1E+6 {————t—%
= 102>+ 10%nis a 1E+4
quadratic function 12‘3
+

IE+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

Analysis of Algorithms v1.6 22

Big-Oh and Growth Rate

% The big-Oh notation gives an upper bound on the
growth rate of a function

The statement “f(n) is O(g(n))” means that the growth
rate of f{n) is no more than the growth rate of g(n)

We can use the big-Oh notation to rank functions
according to their growth rate

Sfln)is O(g(n)) | g(n)is O(fn))
g(n) grows more Yes No
fln) grows more No Yes
Same growth Yes Yes
Analysis of Algorithms v1.6 23

Big-Oh Notation (§1.2)
10,000
Given functions f{n) and 30
g(n), we say that fin) is Looo L —2neto
O(g(n)) if there are ’
positive constants -
¢ and n, such that 100
fn) < cg(n) for n>n, ——
10 ==
@ Example: 2n + 10 is O(n) z
m 2n+10<c¢n
1 T T
= (e=2n=10 1 10 100 1,000
s n>10/(c-2) n
= Pick ¢=3and n,=10
Analysis of Algorithms v1.6 24

CSS343 winter 03, analysis version

Big-Oh Example
1,000,000
Example: the function o
n?is not O(n) e E
s n’<cn 10,000 H_—n
m n<c
= The above inequality 1,000
cannot be satisfied -
since ¢ must be a 100 7=
constant
10 +
1
1 10 100 1,000
n
Analysis of Algorithms v1.6 25

More Big-Oh Examples Q’L

7n-2
7n-2 is O(n)
need ¢ > 0 and n, > 1 such that 7n-2 < cen for n > n,
thisis true forc =7 and ny = 1

m3n3+20n2 + 5
3n3 +20n2 + 5 is O(n®)
need ¢ > 0 and n, > 1 such that 3n® + 20n2 + 5 < cen3 for n > n,
this is true for c = 4 and n, = 21

m3logn + log log n
3log n + log log n is O(log n)
need ¢ > 0 and n, > 1 such that 3 log n + log log n < celog n for n > n,
this is true forc =4 and n, = 2
Analysis of Algorithms v1.6 26

Big-Oh Rules

@ If is f(n) @ polynomial of degree d, then fin) is
on?), i.e.,
1. Drop lower-order terms
2. Drop constant factors
Use the smallest possible class of functions
» Say "2n is O(n)" instead of “2n is O(n?)”
Use the simplest expression of the class
= Say "3n + 5 is O(n)" instead of “3n + 5 is O(3n)"

Analysis of Algorithms v1.6 27

CSS343 winter 03, analysis version

Asymptotic Algorithm Analysis

% asymptotic analysis = determining an algorithms
running time in big-Oh notation

€ asymptotic analysis steps:

= We find the worst-case number of primitive operations
executed as a function of the input size
= We express this function with big-Oh notation
4 Example:
» We determine that algorithm arrayMax executes at most
7n — 2 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”
or “runs in order n time”

4 Since constant factors and lower-order terms are
eventually dropped, we can disregard them when
counting primitive operations!

Analysis of Algorithms v1.6

28

R

\

Intuition for Asymptotic
.Notation

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)
big-Theta

= f(n) is ©(g(n)) if f(n) is asymptotically equal to g(n)

little-oh

= f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
= f(n) is w(g(n)) if is asymptotically strictly greater than g(n)

Analysis of Algorithms v1.6 29

Relatives of Big-Oh

big-Omega
= f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that
f(n) = ceg(n) for n > n,
big-Theta
= f(n) is ©(g(n)) if there are constants ¢’ > 0 and c” > 0 and an
integer constant n, > 1 such that c’eg(n) < f(n) < c”eg(n) for n > n,
little-oh
= f(n) is o(g(n)) if, for any constant c > 0, there is an integer
constant n, > 0 such that f(n) < ceg(n) for n > n,
little-omega
= f(n) is w(g(n)) if, for any constant c > 0, there is an integer
constant n, > 0 such that f(n) > ceg(n) for n > n,

Analysis of Algorithms v1.6 30

CSS343 winter 03, analysis version

Example Uses of the
~Relatives of Big-Oh

= 5n?is Q(n?)

f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=5andn,=1
= 5n?is Q(n)
f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=1andn,=1
= 5n’is @(n)
f(n) is w(g(n)) if, for any constant ¢ > 0, there is an integer constant n, >
0 such that f(n) > ceg(n) forn > n,
need 5n¢® > con, — given c, the n, that satifies this is ny > ¢/5 > 0

Analysis of Algorithms v1.6 31

More math tools & proofs

#Correctness of computing average
= loop invariants and induction

#Recurrence equations

#Strong induction

#Cost of recursive algorithms with
recurrence equations.

Analysis of Algorithms v1.6 32

Computing Prefix Averages

% asymptotic analysis

35
examples: two algorithms 0l ox o
for prefix averages 04

The i-th prefix average of 25
an array X is average of the 20
first (i + 1) elements of X: 15 4
A[i]= (XT0] + X[1]+ ... + XD/G+1) 1o
4 Computing the array 4 of 51
prefix averages of another o - L
array X has applications to 123 4567
financial analysis
Analysis of Algorithms v1.6 3

CSS343 winter 03, analysis version

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAveragesl(X, n)
Input array X of n integers
Output array 4 of prefix averages of X #operations

1. A « new array of n integers

2.fori<0Oton—1do

3 s« X[0]

4. forj < 1 toido

S. s < s+ X[j]

6 Ali]«s/(@i+1)

7. return A

Analysis of Algorithms v1.6 34

Prefix Averages (Quadratic)

4 The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations
1. A < new array of n integers n
2. fori<0Oton—1do n
3. s <« X[0] 2n
4 forj« 1 toido 1+2+..+(m-1)
5. s < s+ X[j] 3(1+2+..4+(m-1))
6. Ali]l«s/(i+1) 4n
7. return A 1

Analysis of Algorithms v1.6 35

Arithmetic Progression
7
The running time of
prefixAveragesl is &
O(1+2+...+n) 5
The sum of the first n 4
integers is n(n+1)/2 3
= There is a simple visual
proof of this fact 2
Thus, algorithm 1+—
prefixAverageslI runs in 0
1
O(n?) time 1 2 3 4 5 6
Analysis of Algorithms v1.6 36

CSS343 winter 03, analysis version

Prefix Averages (Linear, non-
_recursive)

The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array 4 of prefix averages of X #operations
A « new array of n integers n
s« 0
fori< Oton—1do

s <« 5+ X[i]
Ali]«s/(@+1)
return A

— 3 3 X~

Algorithm prefixAverages2 runs in O(n) time

Analysis of Algorithms v1.6 37

Prefix Averages (Linear)

@ The following algorithm computes prefix averages in
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n)
Input array X of n > 1 integer.
Empty array 4; A is same size as X.
Output array A[0]...4[n-1] changed to hold prefix averages of X.
returns sum of X[0], X[1],....X[n-1]
1. ifn=1
2 A[0] « X[0]
3. return A[0]
4. tot « recPrefixSumAndAverage(X,4,n-1)
5. tot « tot + X[n-1]
6. A[n-1]«tot/n
7. return tot;

Analysis of Algorithms v1.6 38

Prefix Averages (Linear)

The following algorithm computes prefix averages in
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of n > 1 integer.
Empty array 4; A is same size as X.
Output array A[0]...4[n-1] changed to hold prefix averages of X.
returns sum of X[0], X[1],...,X[n-1] #operations
if n=1 1
A[0] « X[0] 3
return A[0] 2
tot < recPrefixSumAndAverage(X,A4,n-1) 3+T(n-1)
tot « tot + X[n-1] 4
A[n-1] «tot/ n 4
return fot; 1
Analysis of Algorithms v1.6 39

CSS343 winter 03, analysis version

Prefix Averages, Linear

4 Recurrence equation

«T(1) =6

= T(n) = 13 + T(n-1) for n>1.
% Solution of recurrence is

= T(n) = 13(n-1) + 6
#T(n) is O(n).

Analysis of Algorithms v1.6 40

CSS343 winter 03, analysis version

