Analysis of Algorithms

AITRIL

Input Algorithm

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

Math you need to know

4 Summations (Sec. 1.3.1)
% Logarithms and Exponents (Sec. 1.3.2)
4 properties of logarithms:
logy(xy) = logyx + logpy
log,, (x/y) = logyx - logyy
log,x2 = alogyx
log,a = log,a/log,b
# properties of exponentials:
a(b+c) = aba c
abc - (ab)c
. ab /ac = a(b-c)
# Proof techniques (Sec. 1.3.3)  p = gugp
% Basic probability (Sec. 1.3.4)  bc=a g
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‘Math you need to know

# Proofs are

= a sequence of statements

= Each statement is true, based on
+ Definitions
+ Hypotheses
+ Well-known math principles
+ Previous statements

= Statements lead towards conclusion
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Induction proof

4 Method of proving statements for
(infinitely) large values of n, (n is the
induction variable).

#Math way of using a loop in a proof.
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Example induction proof

# Prove: for all int x, for all int y, for all int n,
If n is positive, then x" — y" is divisible by x-y.
# Let S, denote “for all x and y, x" — y" is divisible by x-
v
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'Example induction proof

# Prove: for all int x, for all int y, for all int n,
If n is positive, then x» — y" is divisible by x-y.
% Let S, denote “for all x and y, x" — y" is divisible by x-
v
4 Proof with induction:
= Base case: show S,
= Inductive Step: for all k 21, if S, is true, than S,
is true.
OR
Inductive Step: for all k >2, if S, is true, than S
is true.
= S, sometimes called inductive hypothesis.
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'Example induction proof

% Prove: for all int x, for all int y, for all int n,
If n is positive, then x" — yn is divisible by x-y.
# Let S, denote “for all x and y, x" — y" is divisible by x-
v
@ Proof with induction:
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Pseudocode (§1.1)

# Mixture of English, Very High-level
math expressions, and pseudocode:

computer code Algorithm arrayMax(A, n)
# Less detailed than a Input array A of n integers
program Output maximum element of A

% Preferred notation for | currentMax « A[0]
describing algorithms Step through each element in A,

4 Hides program design updating currentMax when a
issues bigger element is found

. . eturn currentM
# Can write at different [T CHITenEEAT
levels of detail.
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Pseudocode (§1.1)

# Mixture of English, Detailed pseudocode
math expressions, and
computer code Algorithm arrayMax(A, n)

# Less detailed than a Input array A of n integers
program Output maximum element of A

% Preferred notation for | currentMax « A[0]
describing algorithms | fori« 1ton-1do

4% Hides program design if A[i] > currentMax then
issues currentMax « Ali]

} ) return currentMax
% Can write at different
levels of detail.
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Pseudocode Details

formatting allowed
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# Control flow % Method call
= if ... then ... [else ...] var.method (arg [, arg...])
= while ... do ... # Return value
= repeat ... until ... return expression
= for..do.. # Expressions
= Indentation replaces braces &ﬁislfégn%ejn;va)
4 Method declaration - Equality testing
Algorithm method (arg |, arg...]) (like == in Java)
Input ... n? Superscripts and other
Output ... mathematical

Primitive Operations

# Basic computations

# Examples:
performed by an

Evaluating an

array

# Largely independent from
the programming
|anguage method
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algorithm expression
. . = Assigning a value
# Identifiable in to a variable
pseudocode = Indexing into an

» Calling a method
Returning from a

Estimating performance

4 Count Primitive Operations
# = time needed by RAM model

4 Random Access Machine l|§
(RAM) Model has: |
« ACPU -

.
= An potentially unbounded bank of o’
memory cells 2

Each cell can hold an arbitrary 0}
number or character

Memory cells are numbered
Accessing any cell takes unit time
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‘Running Time (§1.1)

4 The running time grows with W hest case
¥ 0 | | average case
the mpLIt size. B worst case
4 Running time varies with
different input
4 Worst-case: look at input
causing most operations
4 Best-case: look at input
causing least number of
operations )
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# Average case: between best Input Size
and worst-case.
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Counting Primitive
_Operations (§1.1)

# Worst-case primitive operations count, as a
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax < A[0]
fori< lton—1do 1+n
if A[i] > currentMax then 2(n-1)
currentMax < A[i] 2(n—1)
{ increment counter i } 2(n—1)
return currentMax 1
Total 7n-2
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Counting Primitive
_Operations (§1.1)

# Best-case primitive operations count, as a
function of the input size

Algorithm arrayMax(A, n) # operations

currentMax < A[0]
fori< lton—1do 1+n

if A[i] > currentMax then 2(n—1)

currentMax < A[i] 0
{ increment counter i } 2(n—-1)
return currentMax 1
Total 5n
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Defining Worst [W(n)], Best
:[B(N)], and Average [A(n)]

% Let I, = set of all inputs of size n.
# Let t(i) = # of primitive ops by alg on input i.
4 W(n) = maximum t(i) taken over all i in I,
4 B(n) = minimum t(i) taken over all i in I,
@ A(n) = Zp(i)t(i) , p(i) = prob. of i occurring.
icl,
# We focus on the worst case
= Easier to analyze
= Usually want to know how bad can algorithm be

= average-case requires knowing probability; often
difficult to determine
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Experimental Studies (§ 1.6)

4 Implement your algorithm ~ 9°%° .
5 . 8000 - =
4 Run your implementation .
. . . . 000 - "
with inputs of varying size .
and composition 2509 it
. . £ 5000
4 Measure running time of 3 2000 :
your implementation (e. £ !
. 3000 - =
g., with -
. L 2000 - w "
System.currentTimeMillis()) &
1000 - i
# Plot the results oL !
1] 50 100
Input Size
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‘Limitations of Experiments

# Implement may be time-consuming and/or
difficult

# Results may not be indicative of the running
time on other inputs not included in the
experiment.

4 In order to compare two algorithms, the same
hardware and software environments must be
used

# Infeasible to test for correct-
ness on all possible inputs.

Analysis of Algorithms v1.6
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‘Theoretical Analysis

4 Uses a high-level description of the algorith
instead of an implementation

@ Characterizes running time as a function of
the input size, n.

# Takes into account all possible inputs

4 Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

# Can prove correctness
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Growth Rate of Running Time

#Changing the hardware/ software
environment
» Affects running time by a constant factor;
= Does not alter its growth rate
#Example: linear growth rate of
arrayMax is an intrinsic property of
algorithm.

4,
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Growth Rates

# Growth rates of a1
functions: el
= Linear~n Eeal ~ Quadratic
= Quadratic ~ n? 1E+20 4 —binear
= Cubic ~ n? 2 E:Z
= I1E+14
# Inalog-log chart,  iEmn
the slope of the line '}.3
corresponds to the  1E+
growth rate of the e
function (for 1E+0
polynomials) 1B+ 1E+2  1E+4  1E+6  1E+8

n
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1E+10
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Constant Factors

1E+26

# The growth rate is 124 - --Quadratic
not affected by 1E+22 17— Quadratic
1E+20 - - -Linear
= constant factors or  |E+18 - — Linear
= lower-order terms _ :]”:j
= E+
# Examples B2
= 1022+ 10%is a linear ”lrlg
function 1E+6 {————t—%
= 102>+ 10%nis a 1E+4
quadratic function 12‘3
+

IE+0  1E+2 1E+4 1E+6  1E+8 1E+10
n
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Big-Oh and Growth Rate

% The big-Oh notation gives an upper bound on the
growth rate of a function

# The statement “f(n) is O(g(n))” means that the growth
rate of f{n) is no more than the growth rate of g(n)

# We can use the big-Oh notation to rank functions
according to their growth rate

Sfln)is O(g(n)) | g(n)is O(fn))
g(n) grows more Yes No
fln) grows more No Yes
Same growth Yes Yes
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Big-Oh Notation (§1.2)
10,000
# Given functions f{n) and 30
g(n), we say that fin) is Looo L —2neto
O(g(n)) if there are ’
positive constants -
¢ and n, such that 100
fn) < cg(n) for n>n, ——
10 ==
@ Example: 2n + 10 is O(n) z
m 2n+10<c¢n
1 T T
= (e=2n=10 1 10 100 1,000
s n>10/(c-2) n
= Pick ¢=3and n,=10
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Big-Oh Example
1,000,000
# Example: the function o
n?is not O(n) e E
s n’<cn 10,000 H_—n
m n<c
= The above inequality 1,000
cannot be satisfied -
since ¢ must be a 100 7=
constant
10 +
1
1 10 100 1,000
n
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More Big-Oh Examples Q’L

# 7n-2
7n-2 is O(n)
need ¢ > 0 and n, > 1 such that 7n-2 < cen for n > n,
thisis true forc =7 and ny = 1

m3n3+20n2 + 5
3n3 +20n2 + 5 is O(n®)
need ¢ > 0 and n, > 1 such that 3n® + 20n2 + 5 < cen3 for n > n,
this is true for c = 4 and n, = 21

m3logn + log log n
3log n + log log n is O(log n)
need ¢ > 0 and n, > 1 such that 3 log n + log log n < celog n for n > n,
this is true forc =4 and n, = 2
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Big-Oh Rules

@ If is f(n) @ polynomial of degree d, then fin) is
on?), i.e.,
1. Drop lower-order terms
2. Drop constant factors
# Use the smallest possible class of functions
» Say "2n is O(n)" instead of “2n is O(n?)”
# Use the simplest expression of the class
= Say "3n + 5 is O(n)" instead of “3n + 5 is O(3n)"

Analysis of Algorithms v1.6 27

CSS343 winter 03, analysis version




Asymptotic Algorithm Analysis

% asymptotic analysis = determining an algorithms
running time in big-Oh notation

€ asymptotic analysis steps:

= We find the worst-case number of primitive operations
executed as a function of the input size
= We express this function with big-Oh notation
4 Example:
» We determine that algorithm arrayMax executes at most
7n — 2 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”
or “runs in order n time”

4 Since constant factors and lower-order terms are
eventually dropped, we can disregard them when
counting primitive operations!

Analysis of Algorithms v1.6
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Intuition for Asymptotic
.Notation

Big-Oh

= f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
big-Omega

= f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)
big-Theta

= f(n) is ©(g(n)) if f(n) is asymptotically equal to g(n)

little-oh

= f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega
= f(n) is w(g(n)) if is asymptotically strictly greater than g(n)
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Relatives of Big-Oh

# big-Omega
= f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that
f(n) = ceg(n) for n > n,
# big-Theta
= f(n) is ©(g(n)) if there are constants ¢’ > 0 and c” > 0 and an
integer constant n, > 1 such that c’eg(n) < f(n) < c”eg(n) for n > n,
# little-oh
= f(n) is o(g(n)) if, for any constant c > 0, there is an integer
constant n, > 0 such that f(n) < ceg(n) for n > n,
# little-omega
= f(n) is w(g(n)) if, for any constant c > 0, there is an integer
constant n, > 0 such that f(n) > ceg(n) for n > n,
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Example Uses of the
~Relatives of Big-Oh

= 5n?is Q(n?)

f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=5andn,=1
= 5n?is Q(n)
f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ceg(n) for n > n,
letc=1andn,=1
= 5n’is @(n)
f(n) is w(g(n)) if, for any constant ¢ > 0, there is an integer constant n, >
0 such that f(n) > ceg(n) forn > n,
need 5n¢® > con, — given c, the n, that satifies this is ny > ¢/5 > 0
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More math tools & proofs

#Correctness of computing average
= loop invariants and induction

#Recurrence equations

#Strong induction

#Cost of recursive algorithms with
recurrence equations.
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Computing Prefix Averages

% asymptotic analysis

35
examples: two algorithms 0l ox o
for prefix averages 04

# The i-th prefix average of 25
an array X is average of the 20
first (i + 1) elements of X: 15 4
A[i]= (XT0] + X[1]+ ... + XD/G+1) 1o
4 Computing the array 4 of 51
prefix averages of another o - L
array X has applications to 123 4567
financial analysis
Analysis of Algorithms v1.6 3
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Prefix Averages (Quadratic)

# The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAveragesl(X, n)
Input array X of n integers
Output array 4 of prefix averages of X #operations

1. A « new array of n integers

2.fori<0Oton—1do

3 s« X[0]

4. forj < 1 toido

S. s < s+ X[j]

6 Ali]«s/(@i+1)

7. return A
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Prefix Averages (Quadratic)

4 The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X  #operations
1. A < new array of n integers n
2. fori<0Oton—1do n
3. s <« X[0] 2n
4 forj« 1 toido 1+2+..+(m-1)
5. s < s+ X[j] 3(1+2+..4+(m-1))
6. Ali]l«s/(i+1) 4n
7. return A 1
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Arithmetic Progression
7
# The running time of
prefixAveragesl is &
O(1+2+...+n) 5
# The sum of the first n 4
integers is n(n+1)/2 3
= There is a simple visual
proof of this fact 2
# Thus, algorithm 1+—
prefixAverageslI runs in 0
1
O(n?) time 1 2 3 4 5 6
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Prefix Averages (Linear, non-
_recursive)

# The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array 4 of prefix averages of X #operations
A « new array of n integers n
s« 0
fori< Oton—1do

s <« 5+ X[i]
Ali]«s/(@+1)
return A

— 3 3 X~

# Algorithm prefixAverages2 runs in O(n) time
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Prefix Averages (Linear)

@ The following algorithm computes prefix averages in
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n)
Input array X of n > 1 integer.
Empty array 4; A is same size as X.
Output array A[0]...4[n-1] changed to hold prefix averages of X.
returns sum of X[0], X[1],....X[n-1]
1. ifn=1
2 A[0] « X[0]
3. return A[0]
4. tot « recPrefixSumAndAverage(X,4,n-1)
5. tot « tot + X[n-1]
6. A[n-1]«tot/n
7. return tot;
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Prefix Averages (Linear)

# The following algorithm computes prefix averages in
linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of n > 1 integer.
Empty array 4; A is same size as X.
Output array A[0]...4[n-1] changed to hold prefix averages of X.
returns sum of X[0], X[1],...,X[n-1] #operations
if n=1 1
A[0] « X[0] 3
return A[0] 2
tot < recPrefixSumAndAverage(X,A4,n-1) 3+T(n-1)
tot « tot + X[n-1] 4
A[n-1] «tot/ n 4
return fot; 1
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Prefix Averages, Linear

4 Recurrence equation

«T(1) =6

= T(n) = 13 + T(n-1) for n>1.
% Solution of recurrence is

= T(n) = 13(n-1) + 6
#T(n) is O(n).
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