Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Math you need to know

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)
- Properties of logarithms:
 \[\log_b(xy) = \log_b(x) + \log_b(y) \]
 \[\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y) \]
 \[\log_b(x^y) = y\log_b(x) \]
 \[\log_b(a) = \frac{\log_x(a)}{\log_x(b)} \]
- Properties of exponentials:
 \[a^{b+c} = a^b \cdot a^c \]
 \[a^{bc} = (a^b)^c \]
 \[\frac{a^b}{a^c} = a^{b-c} \]
 \[b^a = a^{\log_a(b)} \]
 \[b^a = a^{\frac{\log_b(a)}{\log_b(b)}} \]

Proofs are

- A sequence of statements
- Each statement is true, based on
 - Definitions
 - Hypotheses
 - Well-known math principles
 - Previous statements
- Statements lead towards conclusion
Induction proof

- Method of proving statements for (infinitely) large values of n, (n is the induction variable).
- Math way of using a loop in a proof.

Example induction proof

- Prove: for all int x, for all int y, for all int n,
 If n is positive, then $x^n - y^n$ is divisible by $x-y$.
- Let S_n denote "for all x and y, $x^n - y^n$ is divisible by $x-y$"

Proof with induction:
- Base case: show S_1
- Inductive Step: for all $k \geq 1$, if S_k is true, than S_{k+1} is true.
- OR
 Inductive Step: for all $k \geq 2$, if S_{k-1} is true, than S_k is true.
- S_n sometimes called inductive hypothesis.
Example induction proof

Prove: for all int \(x \), for all int \(y \), for all int \(n \),
if \(n \) is positive, then \(x^n - y^n \) is divisible by \(x - y \).

Let \(S_n \) denote "for all \(x \) and \(y \), \(x^n - y^n \) is divisible by \(x - y \)."

Proof with induction:

Pseudocode (§1.1)

Very High-level pseudocode:

```
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A
currentMax ← A[0]
Step through each element in A, updating currentMax when a bigger element is found
return currentMax
```

Detailed pseudocode

```
Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A
currentMax ← A[0]
for i ← 1 to n - 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
return currentMax
```
Pseudocode Details

- **Control flow**
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces

- **Method declaration**
 - Algorithm method (arg [, arg ...])

- **Method call**
 - var.method (arg [, arg ...])

- **Return value**
 - return expression

- **Expressions**
 - Assignment (like = in Java)
 - Equality testing (like == in Java)
 - Superscripts and other mathematical formatting allowed

- **Input** ...

- **Output** ...

Primitive Operations

- **Basic computations**
 - performed by an algorithm

- **Identifiable in pseudocode**

- **Largely independent from the programming language**

- **Examples:**
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

Estimating performance

- **Count Primitive Operations**

- **Random Access Machine (RAM) Model**
 - A CPU
 - An potentially unbounded bank of memory cells
 - Each cell can hold an arbitrary number or character
 - Memory cells are numbered
 - Accessing any cell takes unit time

- **=** time needed by RAM model
Running Time (§1.1)
- The running time grows with the input size.
- Running time varies with different input
- Worst-case: look at input causing most operations
- Best-case: look at input causing least number of operations
- Average case: between best and worst-case.

Counting Primitive Operations (§1.1)
- Worst-case primitive operations count, as a function of the input size

```
Algorithm arrayMax(A, n)
currentMax ← A[0]
for i ← 1 to n - 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
{ increment counter i }
return currentMax
```

<table>
<thead>
<tr>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 + n</td>
</tr>
<tr>
<td>2(n - 1)</td>
</tr>
<tr>
<td>2(n - 1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Total: 7n - 2

Counting Primitive Operations (§1.1)
- Best-case primitive operations count, as a function of the input size

```
Algorithm arrayMax(A, n)
currentMax ← A[0]
for i ← 1 to n - 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
{ increment counter i }
return currentMax
```

<table>
<thead>
<tr>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1 + n</td>
</tr>
<tr>
<td>2(n - 1)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2(n - 1)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Total: 5n
Defining Worst \([W(n)]\), Best \([B(N)]\), and Average \([A(n)]\)

- Let \(I_n\) = set of all inputs of size \(n\).
- Let \(t(i)\) = # of primitive ops by alg on input \(i\).
- \(W(n)\) = maximum \(t(i)\) taken over all \(i\) in \(I_n\).
- \(B(n)\) = minimum \(t(i)\) taken over all \(i\) in \(I_n\).
- \(A(n)\) = \[\sum_{i \in I_n} p(i) t(i)\] , \(p(i)\) = prob. of \(i\) occurring.

We focus on the worst case
- Easier to analyze
- Usually want to know how bad can algorithm be
-average-case requires knowing probability; often difficult to determine

Experimental Studies (§ 1.6)

- Implement your algorithm
- Run your implementation with inputs of varying size and composition
- Measure running time of your implementation (e.g., with \(\text{System.currentTimeMillis}()\))
- Plot the results

Limitations of Experiments

- Implement may be time-consuming and/or difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
- Infeasible to test for correctness on all possible inputs.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, \(n \).
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
- Can prove correctness

Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects running time by a constant factor;
 - Does not alter its growth rate
- Example: linear growth rate of `arrayMax` is an intrinsic property of an algorithm.

Growth Rates

- Growth rates of functions:
 - Linear = \(a \)
 - Quadratic = \(a^2 \)
 - Cubic = \(a^3 \)
- In a log-log chart, the slope of the line corresponds to the growth rate of the function (for polynomials)
Constant Factors

- The growth rate is not affected by constant factors or lower-order terms.
- Examples:
 - $10^5n + 10^3$ is a linear function.
 - $10^7n^2 + 10^5n$ is a quadratic function.

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement "$f(n)$ is $O(g(n))$" means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th>$g(n)$ grows more</th>
<th>$f(n)$ grows more</th>
<th>Same growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Big-Oh Notation (§1.2)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
- Example: $2n + 10$ is $O(n)$.
- $2n + 10 \leq cn$.
- $(c-2)n \geq 10$.
- $n \geq 100(c-2)$.
- Pick $c = 3$ and $n_0 = 10$, and $3n \leq 1000$.

Analysis of Algorithms v1.6 22

Analysis of Algorithms v1.6 23

Analysis of Algorithms v1.6 24
Big-Oh Example

- Example: the function n^2 is not $O(n)$
 - $n^2 \leq cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- $7n - 2$
 - $7n - 2$ is $O(n)$
 - need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq cn$ for $n \geq n_0$
 - this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$
 - $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq cn^3$ for $n \geq n_0$
 - this is true for $c = 4$ and $n_0 = 21$

- $3 \log n + \log \log n$
 - $3 \log n + \log \log n$ is $O(\log n)$
 - need $c > 0$ and $n_0 \geq 1$ such that $3 \log n + \log \log n \leq c \log n$ for $n \geq n_0$
 - this is true for $c = 4$ and $n_0 = 2$

Big-Oh Rules

- If $f(n)$ a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors

- Use the smallest possible class of functions
 - Say "2n is $O(n)$" instead of "2n is $O(n^2)$"

- Use the simplest expression of the class
 - Say "3n + 5 is $O(n)$" instead of "3n + 5 is $O(3n)$"
Asymptotic Algorithm Analysis

- asymptotic analysis = determining an algorithm's running time in big-Oh notation
- asymptotic analysis steps:
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We express this function with big-Oh notation.
- Example:
 - We determine that algorithm `arrayMax` executes at most $7n - 2$ primitive operations.
 - We say that algorithm `arrayMax` "runs in $O(n)$ time" or "runs in order n time".
- Since constant factors and lower-order terms are eventually dropped, we can disregard them when counting primitive operations!

Intuition for Asymptotic Notation

- Big-Oh:
 - $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$.
- Big-Omega:
 - $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$.
- Big-Theta:
 - $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$.
- Little-Oh:
 - $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$.
- Little-Omega:
 - $f(n)$ is $\omega(g(n))$ if $f(n)$ is asymptotically strictly greater than $g(n)$.

 Relatives of Big-Oh

- Big-Omega:
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq cg(n)$ for $n \geq n_0$.
- Big-Theta:
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that $c'g(n) \leq f(n) \leq c''g(n)$ for $n \geq n_0$.
- Little-Oh:
 - $f(n)$ is $o(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \leq cg(n)$ for $n \geq n_0$.
- Little-Omega:
 - $f(n)$ is $\omega(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \geq cg(n)$ for $n \geq n_0$.
Example Uses of the Relatives of Big-Oh

- \(5n^2 \) is \(\Theta(n^2) \)
 \[f(n) = \Omega(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \text{ such that } f(n) \geq c \cdot g(n) \text{ for } n \geq n_0 \]

 let \(c = 5 \) and \(n_0 = 1 \)

- \(5n^2 \) is \(\Omega(n^2) \)
 \[f(n) = \omega(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \text{ such that } f(n) \geq c \cdot g(n) \text{ for } n \geq n_0 \]

 let \(c = 1 \) and \(n_0 = 1 \)

- \(5n^2 \) is \(\Omega(n) \)
 \[f(n) = o(g(n)) \text{ if, for any constant } c > 0, \text{ there is an integer constant } n_0 \geq 0 \text{ such that } f(n) < c \cdot g(n) \text{ for } n \geq n_0 \text{ need } 5n^2 \geq cn_0 \rightarrow \text{ given } c, \text{ the } n_0 \text{ that satisfies this is } n_0 \geq c/5 \geq 0 \]

More math tools & proofs

- Correctness of computing average
 - loop invariants and induction
- Recurrence equations
- Strong induction
- Cost of recursive algorithms with recurrence equations.

Computing Prefix Averages

- asymptotic analysis examples: two algorithms for prefix averages
- The \(i \)-th prefix average of an array \(X \) is average of the first \((i+1) \) elements of \(X \):
 \[A[i] = (X[0] + X[1] + \ldots + X[i])/(i+1) \]
- Computing the array \(A \) of prefix averages of another array \(X \) has applications to financial analysis
Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition:

Algorithm `prefixAverages1(X, n)`

- **Input**: array `X` of `n` integers
- **Output**: array `A` of prefix averages of `X`

1. `A ← new array of n integers` \#operations
2. `for i ← 0 to n − 1 do` \#operations
3. `s ← X[0]` \#operations
4. `for j ← 1 to i do` \#operations
5. `s ← s + X[j]` \#operations
6. `A[i] ← s / (i + 1)` \#operations
7. `return A` \#operations

Arithmetic Progression

- The running time of `prefixAverages1` is \(O(1 + 2 + \ldots + n)\)
- The sum of the first `n` integers is \(n(n + 1)/2\)
 - There is a simple visual proof of this fact
- Thus, algorithm `prefixAverages1` runs in \(O(n^2)\) time
Prefix Averages (Linear, non-recursive)

The following algorithm computes prefix averages in linear time by keeping a running sum:

Algorithm \(\text{prefixAverages2} (X, n) \)

Input

- Array \(X \) of \(n \) integers

Output

- Array \(A \) of prefix averages of \(X \)

\#operations

\(n \)

\(1 \)

\(n \)

\(n \)

\(1 \)

\(n \)

\(1 \)

Algorithm \(\text{prefixAverages2} \) runs in \(O(n) \) time.

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by computing prefix sums (and averages):

Algorithm \(\text{recPrefixSumAndAverage} (X, A, n) \)

Input

- Array \(X \) of \(n \geq 1 \) integer.
- Empty array \(A \); \(A \) is same size as \(X \).

Output

- Array \(A[0], \ldots, A[n-1] \) changed to hold prefix averages of \(X \).

\#operations

1. if \(n = 1 \)

2. \(A[0] \leftarrow X[0] \)

3. return \(A[0] \)

4. tot \(\leftarrow \text{recPrefixSumAndAverage} (X, A, n-1) \)

5. tot \(\leftarrow \text{tot} + X[n-1] \)

6. \(A[n-1] \leftarrow \text{tot} \div n \)

7. return \(\text{tot} \);

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by computing prefix sums (and averages):

Algorithm \(\text{recPrefixSumAndAverage} (X, A, n) \)

Input

- Array \(X \) of \(n \geq 1 \) integer.
- Empty array \(A \); \(A \) is same size as \(X \).

Output

- Array \(A[0], \ldots, A[n-1] \) changed to hold prefix averages of \(X \).

\#operations

if \(n = 1 \)

\(1 \)

\(1 \)

\(3 + 7(n-1) \)

\(4 \)

\(1 \)
Prefix Averages, Linear

Recurrence equation
- \(T(1) = 6 \)
- \(T(n) = 13 + T(n-1) \) for \(n > 1 \).

Solution of recurrence is
- \(T(n) = 13(n-1) + 6 \)
- \(T(n) \) is \(O(n) \).