
Graphs 2/21/2003 9:27 AM

1

Graphs version 1.3 1

Graphs

ORD

DFW

SFO

LAX

80
2

17
43

1843

1233

337

Graphs version 1.3 2

Outline and Reading
Graphs (§6.1)

Definitions
Applications
Terminology
Properties
ADT

Data structures for graphs (§6.2)
Edge list structure
Adjacency list structure
Adjacency matrix structure

Graphs version 1.3 3

Graph
A graph is a pair (V, E), where

V is a set of nodes, called vertices
E is a collection of edges (pairs of vertices)
Vertices and edges are positions and store elements

Graphs useful for representing real-world relationships:
vertex = airport
edge = flight route, storing mileage
Abstract real-world problems into problems on graphs

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142

Graphs 2/21/2003 9:27 AM

2

Graphs version 1.3 4

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
Electronic circuits

Printed circuit board
Integrated circuit

Transportation networks
Highway network
Flight network

Computer networks
Local area network
Internet
Web

Databases
Entity-relationship diagram

Graphs version 1.3 5

Sample problems

What is cheapest way to fly from X to Y?
If airport X closes from bad weather, can I
still fly between every other pair of cities?
Many classes have prereqs; in what order can
I take the classes for my major?
How much traffic can flow between
intersection X and intersection Y
How can I minimize the amount of wiring
needed to connect some outlets together?

Graphs version 1.3 6

Edge Types
Directed edge

ordered pair of vertices (u,v)
first vertex u is the origin
second vertex v is the destination
e.g., a flight

Undirected edge
unordered pair of vertices (u,v)
e.g., a flight route

Directed graph
all the edges are directed
e.g., route network

Undirected graph
all the edges are undirected
e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD849
miles

Graphs 2/21/2003 9:27 AM

3

Graphs version 1.3 7

Terminology
End vertices (or endpoints) of an
edge

U and V are the endpoints of a
Edges incident on a vertex

a, d, and b are incident on V
Adjacent vertices

U and V are adjacent
Degree of a vertex

X has degree 5
Parallel edges (typically not used)

h and i are parallel edges
Self-loop (typically not used)

j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Graphs version 1.3 8

P1

Terminology (cont.)
Path

sequence of alternating vertices
and edges
begins and ends with some vertex
each edge is preceded and
followed by its endpoints

Simple path
path such that all its vertices and
edges are distinct

Reachable
path exists

Examples
P1=(V,b,X,h,Z) is a simple path
P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple
Z is reachable from U

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Graphs version 1.3 9

Terminology (cont.)
Cycle

circular sequence of alternating
vertices and edges
each edge is preceded and
followed by its endpoints
edges traversed only in one
direction

Simple cycle
cycle such that all its vertices
and edges are distinct

Examples
C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a
simple cycle
C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple
C3=(X,h,Z,h,X) is not a cycle

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

C3

Graphs 2/21/2003 9:27 AM

4

Graphs version 1.3 10

Subgraphs
A subgraph S of a graph
G is a graph such that

The vertices of S are a
subset of the vertices of G
The edges of S are a
subset of the edges of G

A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

Graphs version 1.3 11

Connectivity

A graph is
connected if there is
a path between
every pair of
vertices
A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

Graphs version 1.3 12

Trees and Forests
A (free) tree is an
undirected graph T such
that

T is connected
T has no cycles

Different definition than a
rooted tree

A forest is an undirected
graph without cycles
The connected
components of a forest
are trees

Tree

Forest

Graphs 2/21/2003 9:27 AM

5

Graphs version 1.3 13

Spanning Trees and Forests
A spanning tree of a
connected graph is a
spanning subgraph that is
a tree
A spanning tree is not
unique unless the graph is
a tree
Spanning trees have
applications to the design
of communication
networks
A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

Graphs version 1.3 14

Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is

counted twice
Property 2

In an undirected graph
(with no self-loops or
parallel edges)
m ≤ n (n − 1)/2

Proof: at most one edge
for every unique
combination of 2
vertices

What is the bound on m
for a directed graph?

Example
n = 4
m = 6
deg(v) = 3
for all
vertices

Graphs version 1.3 15

Main Methods of the Graph ADT
Vertices and Edges
accessor method:

Object element()
Update methods

Vertex insertVertex(o)
Edge insertEdge(v, w, o)
void removeVertex(v)
void removeEdge(e)

Accessor methods
int numVertices()
int numEdges()
Vertex aVertex()

Accessor methods
Iterator vertices()
Iterator edges()
Iterator incidentEdges(v)
Vertex[2] endVertices(e)
Vertex opposite(v, e)
boolean areAdjacent(v, w)

Methods for directed edges
Vertex origin(e)
Vertex destination(e)
boolean isDirected(e)
Edge insertDirectedEdge(v, w, o)

Graphs 2/21/2003 9:27 AM

6

Graphs version 1.3 16

Edge List Structure
Vertex object

element

Edge object
element
origin vertex object
destination vertex object
directed boolean flag

Vertex sequence
sequence of vertex
objects

Edge sequence
sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Graphs version 1.3 17

Graph ADT with Positions

Recall
Position = place where item is stored in a sequence

In Goodrich’s book:
A Vertex is a Position
An Edge is a Position

Features of Positions
Enables faster removal
Implementation slightly more complex
Unnecessary when removeVertex and removeEdge are not
used

Graphs version 1.3 18

Edge List Structure (w/ Positions)
Vertex object

element
reference to position in
vertex sequence

Edge object
element
origin vertex object
destination vertex object
reference to position in
edge sequence

Vertex sequence
sequence of vertex
objects

Edge sequence
sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Graphs 2/21/2003 9:27 AM

7

Graphs version 1.3 19

Adjacency List Structure
Edge list
structure
Each Vertex now
stores incidence
sequence

sequence of
references to
edge objects of
incident edges

u

v

w
a b

a

u v w

b

Graphs version 1.3 20

Adjacency List Structure (w/
Positions)

Edge list structure
(w/ Positions)
Incidence sequence
for each vertex

sequence of
references to edge
objects of incident
edges

Augmented edge
objects

references to
associated
positions in
incidence
sequences of end
vertices

u

v

w
a b

a

u v w

b

Graphs version 1.3 21

Adjacency Matrix Structure
Edge list structure
Augmented vertex
objects

Integer key (index)
associated with vertex

2D-array adjacency
array

Reference to edge
object for adjacent
vertices
Null for non
nonadjacent vertices

The “old fashioned”
version just has 0 for
no edge and 1 for edge

u

v

w
a b

2

1

0

210

∅∅

∅

∅∅

a

u v w0 1 2

b

Graphs 2/21/2003 9:27 AM

8

Graphs version 1.3 22

Asymptotic Performance

O(n2)O(n + m)O(n + m)Space

O(n2)O(deg(v))O(m)removeVertex(v)

O(1)O(1)O(1)insertEdge(v, w, o)

O(n2)O(1)O(1)insertVertex(o)

O(1)O(1)O(1)removeEdge(e)

O(1)O(min(deg(v),
deg(w)))O(m)areAdjacent (v, w)

O(n)O(deg(v))O(m)Iterating through
incidentEdges(v)

Adjacency
Matrix

Adjacency
List

Edge
List

n vertices, m edges

Notes: Assuming no parallel edges or self-loops
Using Positions (for removeVertex and removeEdge)

Graphs version 1.3 23

Depth-First Search

DB

A

C

E

Graphs version 1.3 24

Outline and Reading
Depth-first search (§6.3.1)

Algorithm
Example
Properties
Analysis

Applications of DFS (§6.5)
Path finding
Cycle finding

Graphs 2/21/2003 9:27 AM

9

Graphs version 1.3 25

Depth-First Search

Depth-first search (DFS) is
general graph traversal technique
visits all the vertices and edges of G
with n vertices and m edges takes O(n + m) time
a recursive traversal like Euler tour for binary trees

A DFS traversal of a graph G can be used to
Determines whether G is connected
Computes the connected components of G
Computes a spanning forest of G
Find and report a path between two given vertices
Find a cycle in the graph

Graphs version 1.3 26

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

Graphs version 1.3 27

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Graphs 2/21/2003 9:27 AM

10

Graphs version 1.3 28

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← G.opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS_Sweep(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

Graphs version 1.3 29

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze

We mark each
intersection, corner
and dead end (vertex)
visited
We mark each corridor
(edge) traversed
We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

Graphs version 1.3 30

Another Example of Depth
First Search

1
2

6

5

4

7

3

Graphs 2/21/2003 9:27 AM

11

Graphs version 1.3 31

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← G.opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS_Sweep(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

Graphs version 1.3 32

Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or BACK

DFS(G, v) called once for each vertex v
Inner loop in DFS(G, v) runs in O(deg(v)) time

Not counting time inside recursive calls
Assuming adjacency list implementation

DFS runs in O(n + m) time
Recall that Σv deg(v) = 2m

Graphs version 1.3 33

Properties of DFS
Property 1

DFS(G, v) visits all the
vertices and edges in the
connected component of v

Property 2
The discovery edges labeled
by DFS(G, v) form a
spanning tree of the
connected component of v
called DFS tree, rooted at v

Property 3
DFS_Sweep(G) visits all
vertices and edges of G

DB

A

C

E

Graphs 2/21/2003 9:27 AM

12

Graphs version 1.3 34

Connected Components &
DFS Spanning Forest

Use DFS(G, v) to label all
edges and vertices in one
connected component
(property 1)
DFS_Sweep can label all
connected components
(property 3)
In a DFS_Sweep call, consider
subgraph of

all vertices
all DISCOVERY Edges

By DFS property 2 and 3, this
subgraph is a Spanning
Forest of G.

Algorithm ccDFS_Sweep(G)
Input graph G
Output labeling of the vertices

and edges of G based on
component number.

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

comp_num ← 1
for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

perform DFS(G, v) search,
labeling vertices and edges
found in the search with
comp_num.

comp_num ← comp_num +1

Graphs version 1.3 35

More Properties of DFS
Classifying Edges by DFS
Edge (v,w) type:

tree = in the DFS tree
back = w is ancestor of v

in DFS tree
forward = w is descendent

of v in DFS tree
cross = w is neither ancestor

nor descendant of v
in DFS tree

(Assuming edge first explored from
v to w).

Property 4: edges labeled BACK
are in fact back edges

Property 5: back edges form a
cycle

DB

A

C

E

Graphs version 1.3 36

Path Finding
Specialize DFS to find a path
between two given vertices v
and z
Call DFS(G, v, z) where

G is the graph
v is the start vertex
z is the destination vertex

Use a stack S to keep track
of the path between the
start vertex and the current
vertex
As soon as destination
vertex z is encountered, we
return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)

Graphs 2/21/2003 9:27 AM

13

Graphs version 1.3 37

Cycle Finding
Specialize DFS to find a
simple cycle
We use a stack S to
keep track of the path
between the start vertex
and the current vertex
As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
cycleDFS(G, w)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

Graphs version 1.3 38

abstract DFS Template
Use Template Method
Design Pattern to
implement DFS
Extend template to
implement any algorithm
that uses DFS.
Extensions need to
define the following:

startVisit()
traverseDiscovery()
traverseBack()
isDone()
finishVisit()
a method that returns
results.

Algorithm DFS(G, v)
setLabel(v, VISITED)
startVisit(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
traverseDiscovery(e)
if (not isDone())

DFS(G, w)
else

setLabel(e, BACK)
traverseBack(e)

finishVisit(v)

