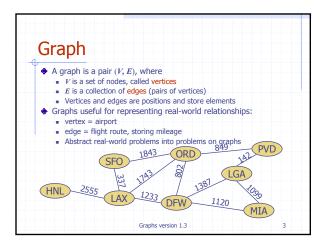
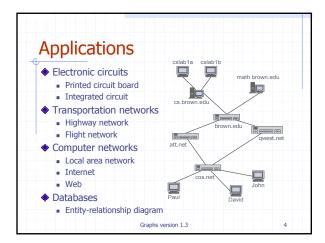


Outline and Reading Graphs (§6.1) Definitions Applications Terminology Properties ADT Data structures for graphs (§6.2) Edge list structure Adjacency list structure Adjacency matrix structure Graphs version 1.3





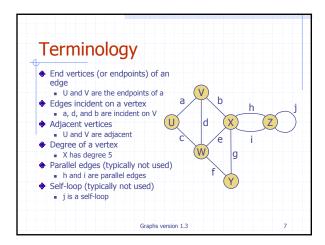
Sample problems

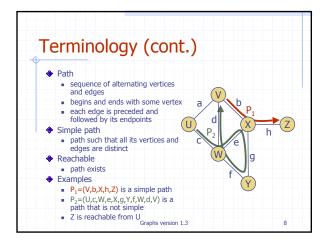
- What is cheapest way to fly from X to Y?
- ♦ If airport X closes from bad weather, can I still fly between every other pair of cities?
- Many classes have prereqs; in what order can I take the classes for my major?
- How much traffic can flow between intersection X and intersection Y
- How can I minimize the amount of wiring needed to connect some outlets together?

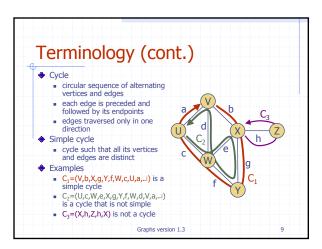
Graphs version 1.3

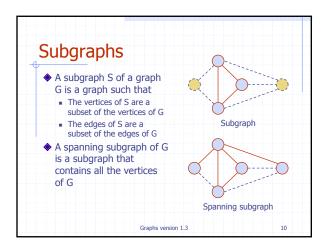
5

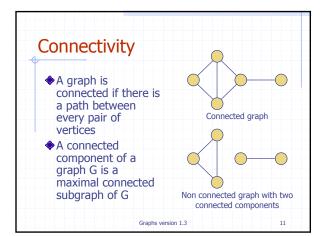
Edge Types Directed edge ordered pair of vertices (u,v) flight • first vertex u is the origin AA 1206 • second vertex v is the destination e.g., a flight Undirected edge • unordered pair of vertices (u,v)PVD e.g., a flight route miles Directed graph all the edges are directed e.g., route network Undirected graph all the edges are undirected • e.g., flight network Graphs version 1.3

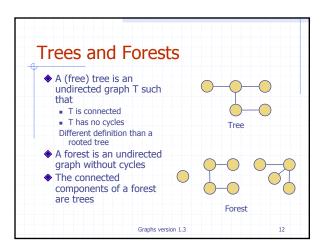




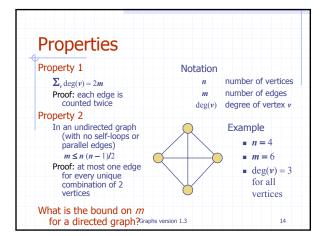




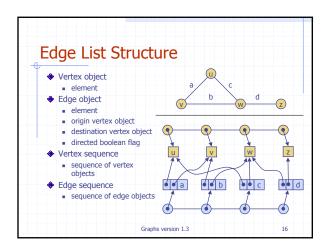


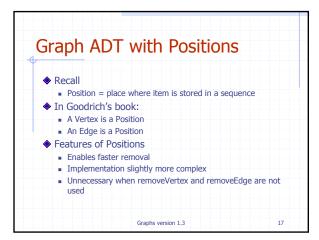


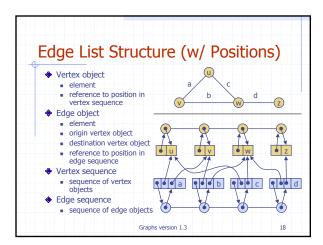


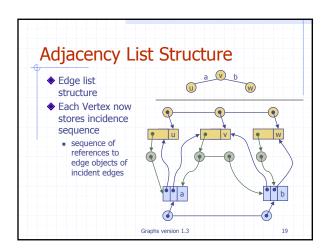


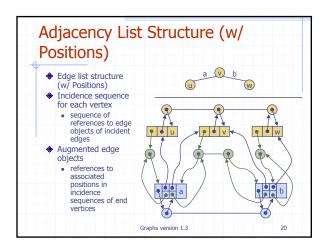
Main Methods of the Graph ADT Vertices and Edges Accessor methods accessor method: Iterator vertices() Object element() Iterator edges() Update methods Iterator incidentEdges(v) Vertex[2] endVertices(e) Vertex insertVertex(o) Edge insertEdge(v, w, o) Vertex opposite(v, e) boolean areAdjacent(v, w) void removeVertex(v) Methods for directed edges void removeEdge(e) Vertex origin(e) Accessor methods Vertex destination(e)boolean isDirected(e) int numVertices() Edge insertDirectedEdge(v, w, o) int numEdges() Vertex aVertex() Graphs version 1.3 15

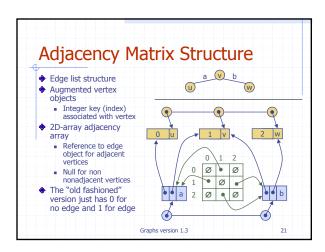






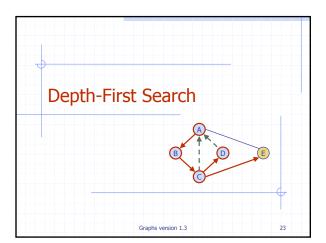






n vertices, m edges	Edge List	Adjacency List	Adjacency Matrix
Space	O(n+m)	O(n+m)	$O(n^2)$
Iterating through incidentEdges(v)	O(m)	<i>O(</i> deg(v))	O(n)
areAdjacent (v, w)	O(m)	$O(\min(\deg(v), \deg(w)))$	0(1)
insertVertex(o)	O (1)	O (1)	O(n2)
insertEdge(v, w, o)	O (1)	O (1)	0(1)
removeVertex(v)	O(m)	<i>O(</i> deg(<i>v</i>))	O(n2)
removeEdge(e)	O (1)	0(1)	0(1)

Graphs version 1.3



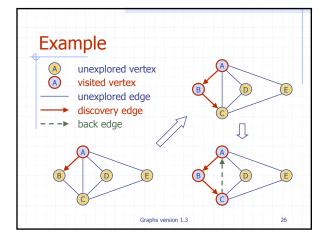
Outline and Reading Depth-first search (§6.3.1) Algorithm Example Properties Analysis Applications of DFS (§6.5) Path finding Cycle finding

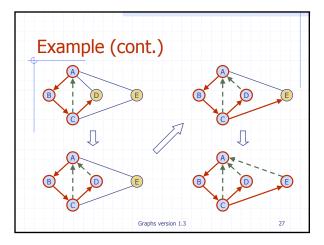
Depth-First Search

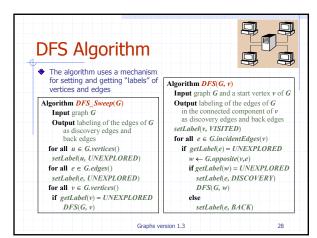
- ♦ Depth-first search (DFS) is
 - general graph traversal technique
 - visits all the vertices and edges of G
 - with n vertices and m edges takes O(n + m) time
 - a recursive traversal like Euler tour for binary trees
- ◆ A DFS traversal of a graph G can be used to
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
 - Find and report a path between two given vertices
 - Find a cycle in the graph

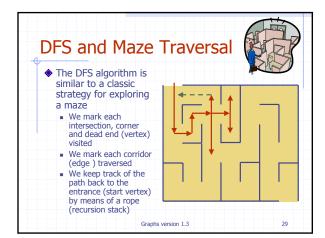
Graphs version

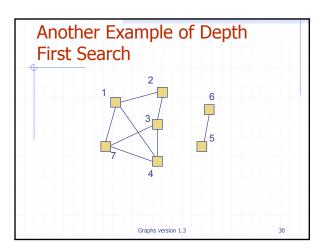
.

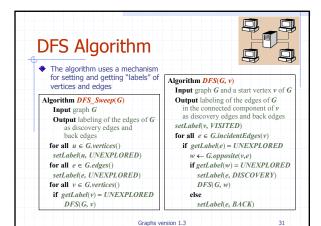




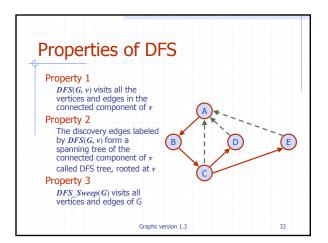


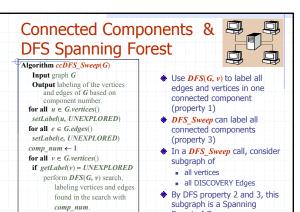






Analysis of DFS ◆ Setting/getting a vertex/edge label takes O(1) time ◆ Each vertex is labeled twice ■ once as UNEXPLORED ■ once as VISITED ◆ Each edge is labeled twice ■ once as UNEXPLORED ■ once as DISCOVERY or BACK ◆ DFS(G, v) called once for each vertex v ◆ Inner loop in DFS(G, v) runs in O(deg(v)) time ■ Not counting time inside recursive calls ■ Assuming adjacency list implementation ◆ DFS runs in O(n + m) time ■ Recall that ∑, deg(v) = 2m Graphs version 1.3

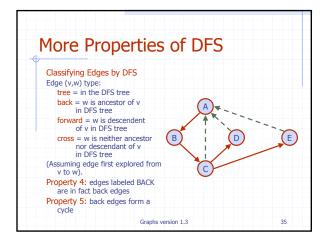


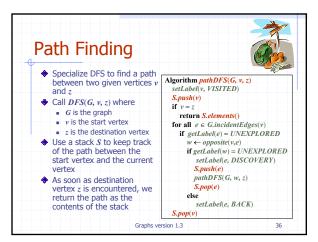


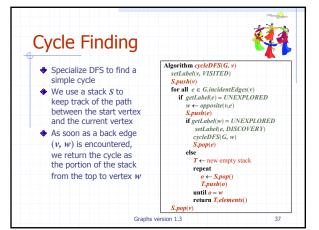
Graphs version 1.3

 $comp_num \leftarrow comp_num +1$

Forest of G.







◆ Use Template Method Design Pattern to implement DFS ◆ Extend template to implement any algorithm that uses DFS. ◆ Extensions need to define the following: ■ startVisit() ■ traverseBiscovery() ■ traverseBiscovery() ■ finishVisit() ■ a method that returns results.	Algorithm DFS(G, v) setLabel(v, VISITED) startVisit(v) for all $e \in G.incidentEdges(v)$ if $getLabel(e) = UNEXPLORED$ $w \leftarrow opposite(v, e)$ if $getLabel(w) = UNEXPLORED$ setLabel(e, DISCOVERY) traverseDiscovery(e) if (not isDone()) DFS(G, w) else $setLabel(e, BACK)$ traverseBack(e) finishVisit(v)
---	---