Graphs version 1.3 1

Outline and Reading
Graphs (§6.1)

= Definitions
= Applications
= Terminology
= Properties
= ADT
Data structures for graphs (§6.2)
= Edge list structure
= Adjacency list structure
= Adjacency matrix structure

Graphs version 1.3 2

‘Graph

% A graph is a pair (¥, E), where
= Vis a set of nodes, called vertices
= E is a collection of edges (pairs of vertices)
= Vertices and edges are positions and store elements
% Graphs useful for representing real-world relationships:
= vertex = airport
= edge = flight route, storing mileage
= Abstract real-world problems into problems on %aphs
1843 8

Graphs version 1.3 3

Applications
< cslabla cslab1b
Electronic circuits

= Printed circuit board
= Integrated circuit
Transportation networks
= Highway network
= Flight network
4@ Computer networks
= Local area network
= Internet
= Web
4 Databases Bavdl
= Entity-relationship diagram

math.brown.edu

brown.edu

Qest.net

Graphs version 1.3 4

Sample problems

What is cheapest way to fly from X to Y?

@ If airport X closes from bad weather, can I
still fly between every other pair of cities?

Many classes have preregs; in what order can
I take the classes for my major?

4 How much traffic can flow between
intersection X and intersection Y

How can I minimize the amount of wiring
needed to connect some outlets together?

Graphs version 1.3 5

'Edge Types

4 Directed edge
= ordered pair of vertices (u,v) flight
= first vertex u is the origin H
= second vertex v is the destination @ AA 1206 @
= e.g., aflight
Undirected edge 849
= unordered pair of vertices (u,v) .—.
= e.g., aflight route @ miles @
Directed graph
= all the edges are directed
= e.g., route network
Undirected graph
= all the edges are undirected
= e.g., flight network

Graphs version 1.3 6

Terminology

End vertices (or endpoints) of an
edge
= Uand V are the endpoints of a
Edges incident on a vertex
= 3,d, and b are incident on V
#® Adjacent vertices
= UandV are adjacent
Degree of a vertex
= X has degree 5
4% Parallel edges (typically not used)
= handiare parallel edges
Self-loop (typically not used)
= jis a self-loop

Graphs version 1.3 7

Terminology (cont.)

@ Path

= sequence of alternating vertices
and edges
= begins and ends with some vertex
= each edge is preceded and
followed by its endpoints
@ Simple path
= path such that all its vertices and
edges are distinct
Reachable
= path exists
@ Examples
= P,=(V,b,X,h,Z) is a simple path
= P,=(U,c,W,eXg,Y,fW,dV)isa
path that is not simple

= Zis reachable from U
Graphs version 1.3 8

Terminology (cont.)

Cycle
circular sequence of alternating
vertices and edges
each edge is preceded and
followed by its endpoints
edges traversed only in one
direction
Simple cycle
= cycle such that all its vertices
and edges are distinct
4 Examples
= C,=(V,bXg,Y,fW,cU,aJ)isa
simple cycle
= C=(UcW,eXg,Y,fWdVa,.)
is a cycle that is not simple
= C3=(X,h,Z,h,X) is not a cycle

Graphs version 1.3 9

‘Subgraphs

4 A subgraph S of a graph
G is a graph such that
= The vertices of S are a
subset of the vertices of G
= The edges of S are a
subset of the edges of G
% A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Spanning subgraph

Graphs version 1.3 10

Connectivity

%A graph is
connected if there is
a path between
every pair of Connected graph
vertices

% A connected
component of a O—O
graph Gis a
maximal connected

subgraph of G Non connected graph with two
connected components

Graphs version 1.3 11

‘Trees and Forests

A (free) tree is an

undirected graph T such
that
= T is connected

= T has no cycles Tree
Different definition than a
rooted tree

% A forest is an undirected

graph without cycles
4 The connected @)
components of a forest

are trees

Forest

Graphs version 1.3 12

‘Spanning Trees and Forests

@ A spanning tree of a
connected graph is a
spanning subgraph that is
atree

A spanning tree is not
unique unless the graph is
a tree

Spanning trees have
applications to the design
of communication
networks

A spanning forest of a
graph is a spanning
subgraph that is a forest

Spanning tree

Graphs version 1.3 13
Properties
Property 1 Notation
3, deg(v) =2m n number of vertices
Proof: each edge is m number of edges
counted twice deg(v) degree of vertex v
Property 2
In an undirected graph Example
(with no self-loops or
parallel edges) " n=4
m<n(n-1)2 s m=6
Proof: at most one edge _
for every unique = deg(n) =3
combination of 2 for all
vertices vertices

What is the bound on m
for a directed graph %raphs version 1.3 14

‘Main Methods of the Graph ADT

4% Vertices and Edges 4 Accessor methods
accessor method: Tterator vertices()
= Object element() Iterator edges()

Update methods Iterator incidentEdges(v)
= Vertex insertVertex(o) Vertex[2] endVertices(e)
= Edge insertEdge(v, w, 0) Vertex opposite(v, €)
= void removeVertex(v) = boolean areAdjacent(v, w)
» void removeEdge(e) @ Methods for.d.irected edges

Accessor methods Vet ot ey
= int numVertices()

boolean isDirected(e)
= int numEdges() Edge insertDirectedEdge(v, w, 0)
= Vertex aVertex()

Graphs version 1.3 15

_Edge List Structure

Vertex object
= element
Edge object
= element
= origin vertex object
= destination vertex object
= directed boolean flag
Vertex sequence
= sequence of vertex
objects
Edge sequence

= sequence of edge objects @; 4Z 4(é
2 A4

Graphs version 1.3 16

@

&

L 4

Graph ADT with Positions

Recall

= Position = place where item is stored in a sequence
In Goodrich’s book:

= A Vertex is a Position

= An Edge is a Position
4 Features of Positions

= Enables faster removal

= Implementation slightly more complex

= Unnecessary when removeVertex and removeEdge are not
used

Graphs version 1.3 17

Edge List Structure (w/ Positions)

@ \ertex object
= element
= reference to position in
vertex sequence

@ Edge object

= element o\ o\
= origin vertex object
= destination vertex object l
= reference to position in II u
edge sequence
\ertex sequence
= sequence of vertex é 4[] 133 ofe
sequen [E[La] REFTE] RIS RISKTa)
Edge sequence \@{ X‘Z % %
= sequence of edge objects o =

Graphs version 1.3 18

‘Adjacency List Structure

4 Edge list @}%

structure

Each Vertex now ~
stores incidence CY: G{ Q
sequence
= sequence of
references to

edge objects of
incident edges

Graphs version 1.3 19

Adjacency List Structure (w/
Positions)
I @ Edge list structure

(w/ Positions)
Incidence sequence

for each vertex
= sequence of
references to edge
objects of incident
edges
@ Augmented edge
objects
= references to
associated
positions in
incidence
sequences of end
vertices

Graphs version 1.3 20

‘Adjacency Matrix Structure

Edge list structure
Augmented vertex

objects
= Integer key (index)
associated with vertex
2D-array adjacency
array
= Reference to edge
object for adjacent
vertices
= Null for non
nonadjacent vertices
The “old fashioned”
version just has 0 for
no edge and 1 for edge

Graphs version 1.3 21

Asymptotic Performance

1 vertices, m edges Edge Adjacency Adjacency
List List Matrix
Space O(n+m) O(n +m) o(n?)
Iterating through N
incidentEdges(v) O(m) O(deg()) om)
1 O(min(deg(v),
areAdjacent (v, w) Oo(m) dea(w))) o)
insertVertex(o) 0(1) 0(1) 0o(n?)
insertEdge(», w, o) [20)) o) o)
removeVertex(v) O(m) O(deg(v)) o(n?)
removeEdge(e) o) o) o)

Notes: Assuming no parallel edges or self-loops
Using Positions (for removeVertex and removeEdge)
Graphs version 1.3 22

Depth-First Search

Graphs version 1.3 23

Outline and Reading

Depth-first search (§6.3.1)
= Algorithm
= Example
= Properties
= Analysis

Applications of DFS (§6.5)
= Path finding
= Cycle finding

Graphs version 1.3 24

Depth-First Search

@ Depth-first search (DFS) is
= general graph traversal technique
= Visits all the vertices and edges of G
= with n vertices and m edges takes O(n + m) time
= a recursive traversal like Euler tour for binary trees
@ A DFS traversal of a graph G can be used to
= Determines whether G is connected
= Computes the connected components of G
= Computes a spanning forest of G
= Find and report a path between two given vertices
= Find a cycle in the graph

Graphs version 1.3 25

(® unexplored vertex (&)

® visited vertex
—— unexplored edge 3"@ ®
— discovery edge (c)
- ==» back edge @

Graphs version 1.3 26

'Example (cont.)

Graphs version 1.3 27

'DFS Algorithm

4 The algorithm uses a mechanism

for s_etting and getting “labels” of Algorithm DFS(G, v)
vertices and edges Input graph G and a start vertex v of G
Algorithm DFS_Sweep(G) Output labeling of the edges of G
Input graph G in the connected component of »
Output labeling of the cdges of G as discovery edges and back edges
as discovery edges and setLabel(v, VISITED)
back edges for all ¢ € G.incidentEdges(v)
for all u € G.vertices() if getLabel(¢) = UNEXPLORED
setLabel(u, UNEXPLORED) w <« G.opposite(v,e)
for all ¢ € G.edges() if getLabel(w) = UNEXPLORED
setLabel(e, UNEXPLORED) setLabel(e, DISCOVERY)
for all v € G.vertices() DFS(G, w)
if getLabel(v) = UNEXPLORED else
DFS(G, v) setLabel(e, BACK)
Graphs version 1.3 28

DFS and Maze Traversal

The DFS algorithm is
similar to a classic
strategy for exploring
a maze

= We mark each
intersection, corner
and dead end (vertex)
visited

We mark each corridor

(edge) traversed

= We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

Graphs version 1.3 29

Another Example of Depth
First Search

ﬂg;ﬁ

Graphs version 1.3 30

'DFS Algorithm

4 The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS_Sweep(G)
Input graph ¢
Output labeling of the edges of G
as discovery edges and
back edges
for all u e G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges
setLabel(v, VISITED)
for all ¢ € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w <« G.opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)

DFS(G, w)
else
setLabel(e, BACK)

for all v € G.vertices()
if getLabel(v) = UNEXPLORED
DFS(G, v)

Graphs version 1.3 31

Analysis of DFS

% Setting/getting a vertex/edge label takes O(1) time
% Each vertex is labeled twice
= once as UNEXPLORED
= once as VISITED
Each edge is labeled twice
= once as UNEXPLORED
= once as DISCOVERY or BACK
DFS(G, v) called once for each vertex v
% Inner loop in DFS(G, v) runs in O(deg(v)) time
= Not counting time inside recursive calls
= Assuming adjacency list implementation
DFS runs in O(n + m) time

» Recall that X deg(v)=2m
Graphs version 1.3 32

Properties of DFS

Property 1
DFS(G, v) visits all the
vertices and edges in the
connected component of v v
Property 2 Y w® S~
The discovery edges labeled "
by DFS(G, v) form a |
spanning tree of the |
connected component of v |

called DFS tree, rooted at v
Property 3

DFS_Sweep(G) visits all

vertices and edges of G

Graphs version 1.3 33

Connected Components &
DFS Spanning Forest

“VAlgorithm ccDFS_Sweep(G)
Input graph G
Output labeling of the vertices
and edges of G based on
component number.
for all u e G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
comp_num « 1
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
perform DFS(G, v) search,
s and edges

labeling verti
found in the search with

comp_num.

comp_num < comp_num +1

@ Use DFS(G, v) to label all
edges and vertices in one
connected component
(property 1)
DFS_Sweep can label all
connected components
(property 3)
In a DFS_Sweep call, consider
subgraph of
= all vertices
= all DISCOVERY Edges
@ By DFS property 2 and 3, this
subgraph is a Spanning
Forest of G.

®

Graphs version 1.3 34

More Properties

Classifying Edges by DFS
Edge (v,w) type:
tree = in the DFS tree
back = w is ancestor of v
in DFS tree
forward = w is descendent
of v in DFS tree
cross = w is neither ancestor
nor descendant of v
in DFS tree
(Assuming edge first explored from
v to w).
Property 4: edges labeled BACK
are in fact back edges
Property 5: back edges form a
cycle

of DFS

Graphs version 1.3 35

“Path Finding

@ Specialize DFS to find a path
between two given vertices v
and z

Call DFS(G, v, z) where

= G is the graph
= v is the start vertex
= 7 is the destination vertex

@ Use a stack § to keep track
of the path between the
start vertex and the current
vertex

As soon as destination
vertex z is encountered, we
return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v=z
return S.elements()
for all ¢ € G.incidentEdges(v)
if getLabel(¢) = UNEXPLORED
w <« opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, 7)
S.pop(e)
else
setLabel(e, BACK)
S.pop(v)

Graphs version 1.3 36

Cycle Finding

@ Specialize DFS to find a
simple cycle

We use a stack S to
keep track of the path
between the start vertex
and the current vertex

As soon as a back edge

®

*

Algorithm cycleDFS(G, v)
setLabel(v, VISITED)
S.push(v)
for all ¢ e Gl.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w « opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
cycleDFS(G, w)

(v, w) is encountered, S.pop(e)
we return the cycle as e'“-T etk
. « new empty stac|
the portion of the stack repeat
from the top to vertex w 0« S.pop()
T.push(o)
untilo =w
return T.elements()
S.pop(v)
Graphs version 1.3 37

abstract DFS Template

@ Use Template Method
Design Pattern to
implement DFS

Extend template to
implement any algorithm
that uses DFS.

Extensions need to
define the following:

startVisit()

traverseDiscovery()

traverseBack()
isDone()

SfinishVisit()

a method that returns
results.

Algorithm DFS(G, v)
setLabel(v, VISITED)
startVisit(v)
for all ¢ e G.incidentEdges(v)
if getLabel(¢) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = U PLORED
setLabel(e, DISCOVERY)
traverseDiscovery(e)
if (not isDone()
DFS(G, w)

else
setLabel(e, BACK)
traverseBack(e)
SfinishVisit(v)

Graphs version 1.3 38

