Computing and Software Systems 343, Winter 2006
Mathematical Principles of Computing II

Assignment 1. Version 1.0.

Part 1a due Tuesday, Jan. 10, 1:45 PM.

Part 1b due Thursday, Jan. 12, 1:45 PM.

Part 1a: Due Tuesday

1. Design a method that solves the maximum contiguous subsequence sum problem, defined as follows: Given an array E of n integers (possibly negative), indexed from 0 to n-1, compute:

 max { x | x =
[image: image1.wmf]å

=

j

i

k

k

E

]

[

 for some i and j satisfying 0 (i (j (n-1}.

The method should return the maximum sum that you found.

Example: for input with n=5, and E = {–2, 11, -4, 13, -2}, the maximum subsequence sum is 20. (= 11 + -4 + 13), since it is bigger than all the other contiguous subsequence sums. Write your algorithm in detailed pseudocode.

2. Analyze the time efficiency of your algorithm (problem #1) using worst-case analysis. Be sure to state the input size parameter, as well as to define the basic operation that you will count. State exactly how many operations you counted, and show how you got your result. Give an exact result, not a big-Oh result.

3. Problem #1 in the Exercise 2.1 section (p. 50 of the book).

4. Problem #4 in the Exercise 2.2 section (p. 68).

5. Write a loop invariant for the loop in Algorithm Mystery (from Problem #4). Your loop invariant should be useful for helping prove correctness of the algorithm. Only write a loop invariant, the proof is not necessary.

6. Programming: Write a method (in java) that does the following:

Given a 2D array of integers as input, find the two adjacent integers in the array that give the highest total sum out of all possible adjacent integers. Integers in the array are adjacent if they are immediately above, below, left, or right of each other. (Diagonally adjacent does not count as adjacent in this problem). Your method should return the total of the two integers that you found.
 Then complete the given java program given so that it reads an input 2D array from a file and prints out the maximum adjacent integer sum. (File reading code is already provided for you). Example solutions are given along with the java program. Turn your program in using e-submit.

Part 1b: Due Thursday.

7. Write a recurrence equation to represent the worst-case number of basic operations used for recArrayFindClose, listed below. Then solve the recurrence equation, getting a closed form solution. Be sure to specify what basic operation you are counting.

Algorithm recArrayFindClose(x, A, j):

Input: An element x, an array A with j (1 integers.

Output: The value |x-A[i]| that is minimized over all i satisfying 0 (i < j. (This how close x is to some element of A[0..j-1])

if j = 1 then

return |A[0]-x|

else if (A[j-1] = x)

return 0

else

dist1 (|A[j-1] – x|

dist2 (recArrayFindClose(x,A,j-1)

return min(dist1, dist2) // min computes minimum of dist1 and dist2

Note: Extra Credit problems are worth at most half as much as assigned problems, so finish all the assigned problems first!

8. [Extra Credit]: Suppose you are given a set of small boxes, numbered 1 to n, identical in every respect except that each of the first i contain a pearl whereas the remaining n - i are empty. You also have two magic wands that can each test if a box is empty or not in a single touch, except that a wand disappears if you test it on an empty box. Give an algorithm that can use the two wands to determine all the boxes containing pearls using at most c * sqrt(n) touches, for some fixed constant c. Your algorithm will not know the value of i in advance, but must try to figure out the value of i. Then analyze your algorithm showing the value you get for the constant c. For even more credit, try to find the algorithm that yields the smallest constant c, or try to find an alternate algorithm that runs in faster than O(sqrt(n)) time.

_1094887197.unknown

