Computing and Software Systems 343, Winter 2006
Mathematical Principles of Computing II

Assignment 2. Version 1.0.

Due Thursday, Jan, 19, 1:45 PM. 

1. Using the definition of Big-Theta, show that for 
[image: image1.wmf],

))

1

log(

2

(

)

(

0

2

3

å

=

+

+

=

n

i

i

n

i

n

f

 f(n) is (n4). (what constants work?). Hint: You do not have to evaluate the summation exactly, but can simply show that c2 n4 ( f(n) ( c1 n4 for appropriately chosen constants for large enough n.

2. Page 60, problem #3 (section 2.2) (big-oh bounds)

3. Page 60, problem #7a (section 2.2) (big-oh proof)

4. Page 78, problem #10 (section 2.4) (recurrence equations for matrix determinant)

5. Page 102, problem #4 (section 3.1) (polynomial evaluation)

6. Page 111-112, problem #2 (section 3.3). (closest-pair)

7. Design a divide-and-conquer method for solving the following problem from the last homework: 
Given a 2D array of integers as input, find the two adjacent integers in the array that give the highest total sum out of all possible adjacent integers. Integers in the array are adjacent if they are immediately above, below, left, or right of each other. (Diagonally adjacent does not count as adjacent in this problem). Your method should return the total of the two integers that you found.
    Write your program in java, and turn your program in using e-submit. Also give a printout of your program. 

8. Analyze your two solutions for the above problem, both the iterative one from the first homework, and your divide-and-conquer solution. Let the number of additions you do be the basic operation, and give an exact count for both versions. Be sure to state your input size parameter. 

9. Design an algorithm for a divide-and-conquer method for computing both the max and the min of the elements of an array A of n numbers. (This should be done simultaneously). 

a. Write out your algorithm in pseudocode.

b. Draw a picture representing the tree of recursive calls made by your algorithm. Exactly how many recursive calls are made when n is a power of 2? 

c. Write a recurrence equation T(n) that represents the worst case number of comparisons done by your algorithm. You may assume n is a power of 2. 

d. Solve your recurrence equation to get a closed form solution. 

e. Is this algorithm better than the brute-force approach?  

Note: Extra credit is not worth as much as the normal problems, so do the normal problems first!

10.  [Extra Credit]: Let P be a set of n teams in some sport. A round robin tournament is a collection of games where each team plays each other team exactly once, and where each game is scheduled to happen in one of n-1 rounds. In each round, every team must play exactly one match against another team. This means no team can play two matches in the same round, and by the end of all n-1 rounds, each team must have played every other team exactly once. Design a divide and conquer algorithm to create a round-robin tournament schedule. You may assume n is a power of 2. 

11. [Another Extra Credit]: 

a. Compute the exact number of key assignments made in the worst-case for mergesort on input size n. A key assignment is one where you are taking a value originally contained in the input and assigning it into some other variable in some other place. Do this for the mergesort described in the book on page 124. 

b. Compute the exact amount of space needed to run the mergesort algorithm when the input size is n. You only need to count the space needed for storing the values that were in the original array, and wherever they were copied. You do not need to count the space taken by values for other variables, such as the integer variables used for looping through an array. Note that space can be reused during different calls to mergesort; you should not count space that is reused twice. 

_1198577158.unknown

