Computing and Software Systems 343, Winter 2005
Mathematical Principles of Computing II

Assignment 3. Version 1.0.

Due Thursday, Feb. 2.

This is an assignment on the following version of the divide and conquer closest-pair algorithm. You will be implementing it, and the description below is incomplete in a few places.

Algorithm ClosestPair(S)

 Input: an Array S[0..n-1] of 2D Points. Assumes there are at least 2 points.

 Output: the distance between the two closest 2D points (using the Euclidean metric).

 Sort the array S of points by X-coordinate.

 return sqrt(recClosestPair(S[0,n-1]))

 Algorithm recClosestPair(S[p..q])

 Input: an Array S[p..q] of 2D Points, already sorted by x-coordinate

 integer indices p and q. Assumes there are at least 2 points in S[p..q].

 Output: the square of the distance between the two closest 2D points in S[p..q]

 (using the Euclidean metric).

 if there are only a few points in S[p..q]

 directly determine closest pair and return the correct square distance.

 // (think about how many base cases you need to make the algorithm work)

 //divide and recur part:

 mid ((p + q)/2

 dleft (recClosestPair(S[p..mid])

 dright (recClosestPair(S[mid+1..q])

 dmin (minimum of dleft and dright.

// conquer step: inspect pairs within the strip.

 Let Sleft denote the points in the left half (S[p..mid]),

 and Sright denote the points in the right half (S[mid+1..q]).

 Since S is sorted by x-coordinate, conceptually, we have divided the set S into

 two according to the vertical line x=c (for some c).

 Put all items from Sleft that are close enough to line x=c into Cleft.

 Put all items from Sright that are close enough to line x=c into Cright.

 For each point in Cleft

 For each point in Cright

dmin (minimum of dmin and distance between the two current points.

1. What is the order of growth of the worst-case run-time cost of the above algorithm ClosestPair? Give some explanation on how you got your result.

2. Describe a set of n 2D points that would yield worst-case behaviour for the above algorithm. You may draw a picture or use a text description.
3. Implement the above algorithm. This is already started for you, in file ClosestPair.java, available on the website. You need only implement recClosestPairAlg2 from that file. Submit your final version via e-submit. Some notes on the implementation:
 requires java 1.5.

 java.awt.geom.Point2D.Double are used to store the 2D points; this

 class has an x coordinate and y coordinate field, as well as a distance() method.

 the main program reads input points from a file and calculates the closest pair

 distance using two algorithms, a brute-force one, and one you will implement.

 there is an example testinputset1.txt file that you can use for testing

And some details on things it would be a good idea to should do:

 create more input test files for further testing

 You can check to see if you got the right result by comparing to the brute-force

 algorithm solution

 use the Point2D.Double.distance() method to compute distances.

 (note: distanceSq computes the square of the distance, not the distance).

4. Extra Credit: Implement the divide and conquer closest-pair algorithm that runs in O(n log n) time.
