Computing and Software Systems 343, Winter 2005
Mathematical Principles of Computing II

Assignment 4. Version 1.1.

Due Thursday, Feb. 9, 1:45 PM.

1. Show how the iterative (non-space-saving) version of the knapsack algorithm works by showing the array of subproblem solutions for the following input: 5 items with (weight,value) pairs of (3,25), (2,20), (1,15), (4,40), and (5,5); weight capacity W=6. (This is 8.4-1a). Be sure to use the version of the algorithm that just computes the value of the best subset, and does not keep track of which subset is the best subset.

2. Consider the knapsack problem above with the 5 items given. 

a. How many different subsets of the first 5 items actually yield the highest possible value when given weight limit 6?

b. How many different subsets of the first 5 items actually yield the highest value possible when given total weight limit 5?

c. How many different subsets of the first 5 items actually yield the highest value possible when given total weight limit 4? 

3. In general, how can we use the table generated by the value-tracking iterative version of the dynamic programming algorithm for knapsack (as shown is #1) to tell whether or not there is more than one optimal subset for the particular instance? 

4. Write pseudocode for the algorithm that finds the composition of the optimal subset(s) when given a completed table of generated values  (the table stores all the different subproblem solutions). If there is more than one optimal subset, your algorithm should list all the different possible solutions. Your algorithm should run in at most O(nk + W) time, where W is the weight limit, n is the number of items, and k is the number of different optimal solutions. 

5. Extra Credit: Write pseudocode for an algorithm that solves the variant of the Knapsack problem where there are an infinite number of copies of each item, so that you can take many copies of each item. Your algorithm should simply return the best value possible. For full credit, you algorithm should not take more than  O(nW) space for storing the array of subproblem solutions (where n is the number of items, and W is the input weight limit). You can use the recursive definition that I mentioned at the end of class on 2/2.

6. Another extra credit:  Give an algorithm that takes a positive integer n as input, and computes the number of possible orderings of n objects under the relations < and =. For example, if n = 3 the 13 possible orderings are as follows: a = b = c, a = b < c, a < b = c, a < b < c, a < c < b, a = c < b, b < a = c, b < a < c, b < c < a, b = c < a, c < a = b, c < a < b, and c < b < a. Your algorithm should run in time polynomial in n.

