Computing and Software Systems 343, Winter 2006
Mathematical Principles of Computing II

Assignment 7. Version 1.0.

Due Thursday, Mar. 9, 4:15 PM.

1. Give a detailed pseudocode for a DFS_sweep traversal on a directed graph that labels the edges that it finds as “tree”, “back”, or “cross/forward”, depending on the classification of the edge according to the DFS search that is being performed. (You do not have to distinguish between cross and forward edges.) Hint: One way to figure out if you have a back edge is to keep the list of nodes that are “currently on the stack of recursive calls”, and examine that list.

2. Consider the following greedy strategy for finding a shortest path from vertex start to vertex goal in a given connected graph:

  1: Initialize path to start.

  2: Initialize VisitedVertices to {start}. 

  3: If start=goal, return path and exit. Otherwise continue. 

  4: Find the edge (start,v) of minimum weight such that v is adjacent to start and v is not in VistedVertices.

  5: Add v to path.

  6: Add v to VisitedVertices.

  7: Set start equal to v and go to step 3.

   Does this greedy strategy always find a shortest path from start to goal?  Either explain intuitively why it works, or give a detailed counter example (including example graph, start node, goal node, and what path is found by the algorithm). 

3. Figure out the worst-case run-time cost of the algorithm in the previous problem, in terms of n, the number of nodes, and m, the number of edges in the input graph. Be sure to state assumptions you made (such as "I assumed the graph was stored with an adjacency matrix.") Also state any assumptions you had to make about how the algorithm above was implemented in order for you to figure out the cost.

.

4. Draw a simple, connected, weighted graph with 8 vertices and 16 edges, each with unique edge weights. Identify one vertex as a “start” vertex, and illustrate a running of Dijkstra’s algorithm on this graph. At a minimum, you must show the distance labels on each vertex and their values as they change, as well as the final single-source shortest path tree at the end of the algorithm.  

5. Starting from the same vertex as in the previous problem, illustrate a running of Prim’s algorithm on the graph. You may illustrate any version of Prim’s algorithm. At a minimum, you need to show the final minimum spanning tree, and the order in which each edge was added to the minimum spanning tree. 

6. Exercise #8, section 9.1. 

7. Exercise #1, section 9.3

Not required extra problems:

[Extra Credit ]:

1. Modify your algorithm from #1 so that it distinguishes between forward and cross edges. Your algorithm should still run in O(n+m) total time. 

2. Suppose you are given a diagram of a telephone network, which is a graph G whose vertices represent switching centers, and whose edges represent communication lines between two centers. The edges are marked by their bandwidth. The bandwidth of a path of multiple links is the bandwidth of its lowest bandwidth edge. Give an algorithm that, given a diagram graph G and two switching centers a and b as input, will find the path of maximum bandwidth between a and b, and output the bandwidth of this path. Writing high-level pseudocode is enough for this algorithm.

