Algorithms, Design and Analysis

Introduction.

Algorithm

• An <u>algorithm</u> is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

- asymptotic analysis examples: two algorithms for prefix averages
 The *i*-th prefix average of an
- array X is average of the first (i + 1) elements of X: A[i] = (X[0] + X[1] + ... + X[i])/(i+1)
- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

 The following algorithm computes prefix averages in quadratic time by applying the definition

 Algorithm prefixAverages I(X, n)

 Input array X of n integers

 Output array A of prefix averages of X

 . $A \leftarrow$ new array of n integers

 for $i \leftarrow 0$ to n - 1 do

 . $s \leftarrow X[0]$

 . $for j \leftarrow 1$ to i do

 . $s \leftarrow s + X[j]$

 . $A[i] \leftarrow s \cdot (i+1)$

 return A

Prefix Averages (Linear, nonrecursive)

 The following algorithm computes prefix averages in linear time by keeping a running sum Algorithm prefixAverages2(X, n)

> Input array X of *n* integers Output array A of prefix averages of X $A \leftarrow$ new array of *n* integers $s \leftarrow 0$

for $i \leftarrow 0$ to n - 1 do $s \leftarrow s + X[i]$

 $A[i] \leftarrow s / (i+1)$ return A

Input size and basic operation examples		
Problem	Input size measure	Basic operation
Search for key in list of <i>n</i> items	Number of items in list	Key comparison
Multiply two matrices of floating point numbers	Dimensions of matrices	Floating point multiplication
Compute a ⁿ	n	Floating point multiplication
Graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge

Counting Primitive Operations (§1.1)

• Worst-case primitive operations count, as a function of the input size

Defining Worst [W(n)], Best [B(N)], and Average [A(n)]

- Let I_n = set of all inputs of size n.
- Let t(i) = # of primitive ops by alg on input i.
- W(n) = maximum t(i) taken over all i in I_n
- B(n) = minimum t(i) taken over all i in I_n
- A(n) = $\sum_{i \in I_n} p(i)t(i)p(i)$ = prob. of i occurring.
- · We focus on the worst case
 - Easier to analyze
 - Usually want to know how bad can algorithm be
 average-case requires knowing probability; often
 - difficult to determine

Prefix Averages, Linear

- Recurrence equation
 - -T(1) = 6
 - -T(n) = 13 + T(n-1) for n>1.
- Solution of recurrence is
 T(n) = 13(n-1) + 6
- T(n) is O(n).

Empirical analysis of time efficiency

- Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds)

OR

- · Count actual number of basic operations
- · Analyze the empirical data

Best-case, average-case,

- For some algorith MOFS time Stepends on type of input:
- Worst case: W(*n*) maximum over inputs of size *n*
- Best case: B(n) minimum over inputs of size n
- Average case: A(n) "average" over inputs of size n
 Number of times the basis operation will be executed on

Number of times the basic operation will be executed on typical input

Types of formulas for basic operation count

- Exact formula e.g., C(*n*) = *n*(*n*-1)/2
- Formula indicating order of growth with specific multiplicative constant
 e.g., C(n) ~ 0.5 n²
- Formula indicating order of growth with unknown multiplicative constant
 e.g., C(n) ~ cn²

Time efficiency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

- Decide on parameter n indicating input siz
- Identify algorithm's <u>basic operatio</u>
- Determine <u>worst</u>, <u>average</u>, and <u>best</u> case for input of size n
- Set up summation for *C(n)* reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)

Example: Sequential search

- *Problem:* Given a list of *n* elements and a search key *K*, find an element equal to *K*, if any.
- Algorithm: Scan the list and compare its successive elements with *K* until either a matching element is found (*successful search*) of the list is exhausted (*unsuccessful search*)
- Worst case
- Best case

Prefix Averages (Quadratic)

 The following algorithm computes prefix averages in quadratic time by applying the definition

٦

Algorithm <i>prefixAverages1(X, n)</i>	
Input array X of <i>n</i> integers	
Output array A of prefix averages	s of X #operations
1. $A \leftarrow$ new array of <i>n</i> integers	п
2. for $i \leftarrow 0$ to $n - 1$ do	n
3. $s \leftarrow X[0]$	2 <i>n</i>
4. for $j \leftarrow 1$ to i do	$1 + 2 + \ldots + (n - 1)$
5. $s \leftarrow s + X[j]$	3(1+2++(n-1))
6. $A[i] \leftarrow s / (i+1)$	4 n
7 return A	1

Time efficiency of recursive

Steps in mathematial grantstransursive algorithms:

- Decide on parameter n indicating <u>input size</u>
- Identify algorithm's <u>basic operation</u>
- Determine <u>worst</u>, <u>average</u>, and <u>best</u> case for input of size n
- Set up a recurrence relation and initial condition(s) for *C*(*n*)-the number of times the basic operation will be executed for an input of size *n* (alternatively count recursive calls).
- Solve the recurrence to obtain a closed form or estimate the order of magnitude of the solution (see Appendix B)