Algorithms, Design and Analysis

Introduction.

Computing Prefix Averages

- asymptotic analysis examples two algorithms for prefix averages
- The i-th prefix average of an array \boldsymbol{X} is average of the first ($\boldsymbol{i}+$ 1) elements of X :
$A[i]=(X[0]+X[1]+\ldots+X[i])(i+1)$
- Computing the array \boldsymbol{A} of prefix averages of another array \boldsymbol{X} has applications to financial analysis

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition
flgorithm prefixAverages $1(X, n)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
for $i \leftarrow 0$ to $n-1$ do
$s \leftarrow X[0]$
for $j \leftarrow 1$ to i do
$s \leftarrow s+X[j]$
$A[i] \leftarrow s /(i+1)$
return A

Algorithm

- An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

A

Prefix Averages (Linear, nonrecursive)

- The following algorithm computes prefix averages in inear time by keeping a running sum

Algorithm prefixAverages $2(X, n)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
$s \leftarrow 0$
for $i \leftarrow 0$ to $\boldsymbol{n}-1$ do
$s \leftarrow s+X[i]$
$A[i] \leftarrow s /(i+1)$

Selection sort

```
Algoritum Smation5y+\/A(0.s 1]
//The algoritian sorss o dial ameay ly wlection som
```



```
0/Ocotpon: Amsy A/f.n 1|sorted is asosolingorian
dse 1+0 to s 2ds
    004-i
    frei-i+1 ton 1 do
        |f Aj|<A|wm| nin-
    smop A|b sud A[rsin]
```


 fre: -1 tas 1 do

$\begin{array}{ll}1-4 \\ j-i & 1\end{array}$
stals) 1 I aad $\langle 0$ l >0 d $4(i+1+4)$
$14+1 \mid-1$

Mystery algorithm

```
for i:= 1 to n-1 do
    max:= i;
    for j:= i+1 to n do
        if |A[j,i]|> |A[ max, i]| then max := j;
    for k:= i to n+1 do
        swap A[i,k ] with A[ max,k ];
    for j:= i+1 to n do
        for k:= n+1 downto i do
            A[j,k]:= A[j,k] - A[ i,k]* A[j,i]/ A[i,i];
```


What is an algorithm?

- Recipe, process, method, technique, procedure, routine, ... with following requirements:

1. Finiteness

ภ terminates after a finite number of steps
2. Definiteness
§ rigorously and unambiguously specified
3. Input
Ω valid inputs are clearly specified
4. Output
δ can be proved to produce the correct output given a valid input

Pseudocode

- Mixture of English, math Very High-level expressions, and computer pseute code
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
- Can write at different levels of detail.

Algorithm $\operatorname{arrayMax}(\boldsymbol{A}, \boldsymbol{n})$ Input array \boldsymbol{A} of \boldsymbol{n} integers Output maximum element of \boldsymbol{A} currentMax $\leftarrow \boldsymbol{A}[0]$
Step through each element in A, updating currentMax when a bigger element is found return currentMax

Pseudocode

- Mixture of English, math expressions, and compute
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
- Can write at different levels of detail. Detailed pseudocode
code

Input
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of \boldsymbol{A}
currentMax $\leftarrow A[0]$
for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax

Input size and basic operation examples

Theoretical analysis of time efficiency
Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size

- Basic operation; the operation that contributes most towards the running time of the algorithm

Counting Primitive Operations (§1.1)

- Worst-case primitive operations count, as a function of the input size

Agorithm $\operatorname{arrayMax}(A, n)$	\# operations
currentMax $\leftarrow A[0]$	2
for $i \leftarrow 1$ to $n-1$ do	$1+n$
if $A[i]>$ currentMax then	2($n-1$)
currentMax $\leftarrow A[i]$	$2(n-1)$
$\{$ increment counter i \}	2($n-1$)
return currentMax	1
	Total $\quad 7 \boldsymbol{n}-2$

Counting Primitive

Operations (§1.1)

- Best-case primitive operations count, as a function of the input size

Algorithm arrayMax $(\boldsymbol{A}, \boldsymbol{n})$		
\quad currentMax $\leftarrow \boldsymbol{A}[0]$	2	
for $\boldsymbol{i} \leftarrow 1$ to $n-1$ do	$\mathbf{1}+\boldsymbol{n}$	
\quad if $\boldsymbol{A}[i]>$ currentMax then	$2(\boldsymbol{n}-1)$	
currentMax $\leftarrow A[i]$		0
$\{$ increment counter $\boldsymbol{i}\}$	$2(\boldsymbol{n}-1)$	
return currentMax	1	
	Total $\quad 5 \boldsymbol{n}$	

Defining Worst [W(n)], Best $[B(N)]$, and Average [A(n)]

- Let $I_{n}=$ set of all inputs of size n.
- Let $t(i)=\#$ of primitive ops by alg on input i.
- $W(n)=$ maximum $t(i)$ taken over all i in I_{n}
- $B(n)=$ minimum $t(i)$ taken over all i in I_{n}
- $\mathrm{A}(\mathrm{n})=\sum_{i \in I_{n}} p(i) t(i) \mathrm{p}(\mathrm{i})=$ prob. of i occurring.
- We focus on the worst case
- Easier to analyze
- Usually want to know how bad can algorithm be
- average-case requires knowing probability; often difficult to determine

Arithmetic Progression

- The running time of prefixAverages 1 is
$\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first \boldsymbol{n} integers
is $n(n+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm
prefixAverages 1 runs in $O\left(n^{2}\right)$ time

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

lgorithm recPrefixSumAndAverage (X, A, n)	$T(n)$ operations
Input array \boldsymbol{X} of $\boldsymbol{n} \geq 1$ integer. Empty array $\boldsymbol{A} ; \boldsymbol{A}$ is same size as \boldsymbol{X}. Output array $\boldsymbol{A}[0] \ldots \boldsymbol{A}[\boldsymbol{n}-1]$ changed to hold prefix averages of \boldsymbol{X}.	
Output array $\boldsymbol{A}[0] \ldots \boldsymbol{A}[\boldsymbol{n}-1]$ changed to hold returns sum of $\boldsymbol{X}[0], \boldsymbol{X}[1], \ldots, \boldsymbol{X} \boldsymbol{n}-1]$	averages of \boldsymbol{X}. \#operations
if $\boldsymbol{n}=1$	1
$A[0] \leftarrow X[0]$	3
return A [0]	2
tot $\leftarrow \operatorname{recPrefixSumAndAverage~}(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{n}-1)$	$3+\mathrm{T}(\mathrm{n}-1)$
tot \leftarrow tot $+\boldsymbol{X}[\boldsymbol{n - 1]}$	4
$A[n-1] \leftarrow$ tot $/ n$	4
return tot	

Prefix Averages, Linear

- Recurrence equation
$-T(1)=6$
$-T(n)=13+T(n-1)$ for $n>1$.
- Solution of recurrence is
$-T(n)=13(n-1)+6$
- $T(n)$ is $O(n)$.

Empirical analysis of time efficiency

- Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds)

OR

- Count actual number of basic operations
- Analyze the empirical data

Best-case, average-case,

For some algorithonexteasepends on type of input:

- Worst case: $\mathrm{W}(n)$ - maximum over inputs of size n
- Best case: $\mathrm{B}(n)$ - minimum over inputs of size n
- Average case: $\mathrm{A}(\mathrm{n})$ - "average" over inputs of size n
- Number of times the basic operation will be executed on typical input

Types of formulas for basic operation count

- Exact formula

$$
\text { e.g., } \mathrm{C}(n)=n(n-1) / 2
$$

- Formula indicating order of growth with specific multiplicative constant
e.g., $\mathrm{C}(n) \sim 0.5 n^{2}$
- Formula indicating order of growth with unknown multiplicative constant
e.g., $\mathrm{C}(n)^{\sim} c n^{2}$

Time efficiency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

- Decide on parameter n indicating input siz
- Identify algorithm's basic operatio
- Determine worst, average, and best case for input of size n
- Set up summation for $C(n)$ reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)

Example: Sequential search

- Problem: Given a list of n elements and a search key K, find an element equal to K, if any.
- Algorithm: Scan the list and compare its successive elements with K until either a matching element is found (successful search) of the list is exhausted (unsuccessful search)
- Worst case
- Best case

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages $1(X, n)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X} \#operations
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
for $\boldsymbol{i} \leftarrow 0$ to $\boldsymbol{n}-1$ do $s \leftarrow X[0]$

2n

for $j \leftarrow 1$ to i do $s \leftarrow s+X[j]$
$1+2+\ldots+(n-1)$
$3(1+2+\ldots+(n-1))$
$A[i] \leftarrow s /(i+1)$
$4 n$

Time efficiency of recursive
Steps in mathematiex|@(1) \$tshnresursive algorithms:

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best case for input of size n
- Set up a recurrence relation and initial condition(s) for $C(n)$-the number of times the basic operation will be executed for an input of size n (alternatively count recursive calls).
- Solve the recurrence to obtain a closed form or estimate the order of magnitude of the solution (see Appendix B)

