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Algorithms, Design and 
Analysis

Introduction.

Algorithm
• An algorithm is a sequence of 

unambiguous instructions for solving a 
problem, i.e., for obtaining a required 
output for any legitimate input in a 
finite amount of time.

Computing Prefix Averages
• asymptotic analysis examples: 

two algorithms for prefix averages
• The i-th prefix average of an 

array X is average of the first (i +
1) elements of X:
A[i] = (X[0] + X[1] + … +X[i])/(i+1)

• Computing the array A of prefix 
averages of another array X has 
applications to financial analysis
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Prefix Averages (Quadratic)
• The following algorithm computes prefix averages in 

quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

1. A ← new array of n integers
2. for i ← 0 to n − 1 do
3. s ← X[0] 
4. for j ← 1 to i do
5. s ← s + X[j]
6. A[i] ← s / (i + 1)
7. return A 

Prefix Averages (Linear, non-
recursive)

• The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ← new array of n integers
s ← 0 
for i ← 0 to n − 1 do

s ← s + X[i]
A[i] ← s / (i + 1)

return A 

Prefix Averages (Linear)
• The following algorithm computes prefix averages in 

linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n)
Input array X of  n ≥ 1 integer. 

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1]
1. if n=1
2. A[0] ← X[0]
3. return A[0]
4. tot ← recPrefixSumAndAverage(X,A,n-1) 
5. tot ← tot + X[n-1]
6. A[n-1] ← tot / n
7. return tot;
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Selection sort Insertion sort

Mystery algorithm

for i := 1 to n - 1 do
max := i ;
for j := i + 1 to n do

if |A[ j, i ]| > |A[ max, i ]| then max := j ;
for k := i  to n + 1 do

swap A[ i, k ]  with  A[ max, k ];
for j := i + 1 to n do

for k := n + 1 downto i do
A[ j, k ] := A[ j, k ]  - A[ i, k ] * A[ j, i ] / A[ i, i ] ;

What is an algorithm?

• Recipe, process, method, technique, 
procedure, routine,… with following 
requirements:

1. Finiteness
b terminates after a finite number of steps

2. Definiteness
b rigorously and unambiguously specified

3. Input
b valid inputs are clearly specified

4. Output
b can be proved to produce the correct output given a 

valid input

5. Effectiveness

Pseudocode
• Mixture of English, math 

expressions,  and computer 
code

• Less detailed than a 
program

• Preferred notation for 
describing algorithms

• Hides program design 
issues

• Can write at different levels 
of detail. 

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
Step through each element in A,
updating currentMax when a 
bigger element is found

return currentMax

Very High-level 
pseudocode:

Pseudocode 
• Mixture of English, math 

expressions,  and computer 
code

• Less detailed than a 
program

• Preferred notation for 
describing algorithms

• Hides program design 
issues

• Can write at different levels 
of detail.

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Detailed pseudocode
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Pseudocode Details
• Control flow

– if … then … [else …]
– while … do …
– repeat … until …
– for … do …
– Indentation replaces braces 

• Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

• Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
← Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other 

mathematical formatting 
allowed

Theoretical analysis of time 
efficiency

Time efficiency is analyzed by determining the 
number of repetitions of the basic operation as a 
function of input size

• Basic operation: the operation that contributes 
most towards the running time of the algorithm

T(n) ˜ copC(n)
running time execution time

for basic operation
Number of times 
basic operation is 

executed

input size

Input size and basic operation 
examples

Basic operationInput size measureProblem

Visiting a vertex or 
traversing an edge

#vertices and/or edgesGraph problem

Floating point 
multiplication

nCompute an

Floating point 
multiplication

Dimensions of matrices
Multiply two matrices of 
floating point numbers

Key comparison
Number of items in list 
n

Search for key in list of 
n items

Counting Primitive 
Operations (§1.1)

• Worst-case primitive operations count, as a 
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 2

Counting Primitive 
Operations (§1.1)

• Best-case primitive operations count, as a 
function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 0

{ increment counter i } 2(n − 1)
return currentMax 1

Total 5n

Defining Worst [W(n)], Best 
[B(N)], and Average [A(n)]

• Let In = set of all inputs of size n. 
• Let t(i) = # of primitive ops by alg on input i.
• W(n) = maximum t(i) taken over all i in In
• B(n) = minimum t(i) taken over all i in I n

• A(n) =                  , p(i) = prob. of i occurring.

• We focus on the worst case
– Easier to analyze
– Usually want to know how bad can algorithm be
– average-case requires knowing probability; often 

difficult to determine 

∑
∈ nIi
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Arithmetic Progression
• The running time of 

prefixAverages1 is
O(1 + 2 + …+ n)

• The sum of the first n integers 
is n(n + 1) / 2
– There is a simple visual 

proof of this fact

• Thus, algorithm 
prefixAverages1 runs in O(n2) 
time 
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Prefix Averages (Linear)
• The following algorithm computes prefix averages in 

linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of  n ≥ 1 integer. 

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1] #operations
if n=1 1

A[0] ← X[0] 3
return A[0] 2

tot ← recPrefixSumAndAverage(X,A,n-1) 3+T(n-1)
tot ← tot + X[n-1] 4
A[n-1] ← tot / n 4
return tot; 1

Prefix Averages, Linear

• Recurrence equation
– T(1) = 6
– T(n) = 13 + T(n-1)  for  n>1.

• Solution of recurrence is 
– T(n) = 13(n-1) + 6 

• T(n) is O(n).

Empirical analysis of time 
efficiency

• Select a specific (typical) sample of inputs

• Use physical unit of time (e.g.,  milliseconds) 

OR

• Count actual number of basic operations 

• Analyze the empirical data

Best-case, average-case, 
worst-caseFor some algorithms efficiency depends on type of 

input:

• Worst case:    W(n) – maximum over inputs of size 
n

• Best case:        B(n) – minimum over inputs of size 
n

• Average case: A(n) – “average” over inputs of size 
n
– Number of times the basic operation will be executed on 

typical  input

Types of formulas for basic 
operation count

• Exact formula
e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with 
specific multiplicative constant

e.g., C(n) ˜ 0.5 n2

• Formula indicating order of growth with 
unknown multiplicative constant

e.g., C(n) ˜ cn2
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Time efficiency of nonrecursive 
algorithms

Steps in mathematical analysis of nonrecursive 
algorithms:

• Decide on parameter n indicating input siz
• Identify algorithm’s basic operatio
• Determine worst, average, and best case for input of 

size n
• Set up summation for C(n) reflecting algorithm’s loop 

structure
• Simplify summation using standard formulas (see 

Appendix A)

Example: Sequential search

• Problem: Given a list of n elements and a 
search key K, find an element equal to K, if 
any.

• Algorithm: Scan the list and compare its 
successive elements with K until either a 
matching element is found (successful 
search) of the list is exhausted (unsuccessful 
search)

• Worst case

• Best case

Prefix Averages (Quadratic)
• The following algorithm computes prefix averages in 

quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations

1. A ← new array of n integers n
2. for i ← 0 to n − 1 do n
3. s ← X[0] 2n
4. for j ← 1 to i do 1 + 2 + …+ (n − 1)
5. s ← s + X[j] 3(1 + 2 + …+ (n − 1))
6. A[i] ← s / (i + 1) 4n
7. return A 1

Time efficiency of recursive 
algorithmsSteps in mathematical analysis of recursive algorithms:

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation

• Determine worst, average, and best case for input of size 
n

• Set up a recurrence relation and initial condition(s) for 
C(n)-the number of times the basic operation will be 
executed for an input of size n (alternatively count 
recursive calls).

• Solve the recurrence to obtain a closed form or estimate 
the order of magnitude of the solution (see Appendix B)


