Algorithms, Design and Analysis

 Introduction.
Computing Prefix Averages

- Input: Array X[1..n]
- Output: Array $A[1 . . n]$ of prefix averages of $X ; i$-th prefix average $=$ average of the first i elements of X :
$A[i]=(X[1]+X[2]+\ldots+X[i]) i$
- Computing the array \boldsymbol{A} of prefix averages of another array \boldsymbol{X} has applications to financial analysis

v1. 2
3

Prefix Averages (Linear, nonrecursive)

- The following algorithm computes prefix averages in finear time by keeping a manimy sum

Algorithm prefixAverages 2(X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
$s \leftarrow 0$
for $i \leftarrow 1$ to n do
$s \leftarrow s+X[i]$
$A[i] \leftarrow s / i$
returin A

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear-time by computing prefix sums (and averages)
Algorithm recPrefixSumAndAverage ($\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{k}$)
Input array $X[1 . . n]$ of integers, integer $\boldsymbol{k}, 1 \leq \boldsymbol{k} \leq n$ integer Empty array \boldsymbol{A} of same size as \boldsymbol{X}
Output array $\boldsymbol{A}[1 \ldots k]$ changed to hold prefix averages of \boldsymbol{X}. returns sum of $\boldsymbol{X}[1], \boldsymbol{X}[2], \ldots, \boldsymbol{X}[k]$
if $k=1$
$A[1] \leftarrow X[1]$
return $A[1]$
tot $\leftarrow \operatorname{recPrefixSumAndAverage}(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{k}-1)$
tot $\leftarrow t o t+X[k]$
$A[k] \leftarrow$ tot $/$
return tot;

Algorithm

- An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages $1(X, n)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
for $i \leftarrow 1$ to $n d o$
$s \leftarrow X[1]$
for $\boldsymbol{j} \leftarrow 2$ to \boldsymbol{i} do

$A[i] \leftarrow s / i$
return A

Selection sort

Algorithm SelectionSort $\left\{\begin{array}{ll}{\left[\begin{array}{ll}0 . n & 1\end{array}\right]}\end{array}\right\}$

//Tbe algorithom sexts a given arrex by seloction sort
//Inpot: An array A 0 (0.n $1 \mid$ of ocdexable elements
/(Output: Array A|p.n 1] sorted in ascending order for it-0 tote 2 do
min -1
for $j+i+1$ tone 1 do if $A[j]<A[$ man $]$ min $+j$
swap $A\left[{ }^{[}\right]$and $A[$ min $]$

Insertion sort

Algoritim Jumarniory 4 alk 1)

 foeirltos 1 to

1-4
vtibe 31 and 40) >1 do $4(j+1]+4$
$A y+i=1-1$

Mystery algorithm

for $i:=1$ to $n-1$ do
max $:=i$;
for $j:=i+1$ to n do
if $|\mathrm{A}[j, i]|>|\mathrm{A}[\max , i]|$ then max $:=j$;
for $k:=i$ to $n+1$ do
swap $\mathrm{A}[i, k]$ with $\mathrm{A}[\max , k]$;
for $j:=i+1$ to n do
for $k:=n+1$ downto i do

$$
\mathrm{A}[j, k]:=\mathrm{A}[j, k]-\mathrm{A}[i, k] * \mathrm{~A}[j, i] / \mathrm{A}[i, i] ;
$$

Pseudocode

- Mixture of English, math Very High-level expressions, and computer pseudocode: code
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
- Can write at different levels of detail.

Algorithm $\operatorname{arrayMax}(A, n)$ Input array \boldsymbol{A} of \boldsymbol{n} integers Output maximum element of \boldsymbol{A} currentMax $\leftarrow \boldsymbol{A}[0]$
Step through each element in A, updating currentMax when a bigger element is found return currentMax

What is an algorithm?

- Recipe, process, method, technique, procedure, routine, ... with following requirements:

1. Finiteness
δ terminates after a finite number of steps
2. Definiteness
Ω rigorously and unambiguously specified
3. Input
Ω valid inputs are clearly specified
4. Output
Ω can be proved to produce the correct output given a valid input
5. Effectiveness
Ω steps are sufficiently simple and basic
v1. 2

Pseudocode

- Mixture of English, math expressions, and compute code
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design ssues
- Can write at different levels of detail.

Input size and basic operation examples

Problem	Input size measure	Basic operation
Search for key in list of nitems	Number of items in list n	Key comparison
Multiply two matrices of floating point numbers	Dimensions of matrices	Floating point multiplication
Compute a^{n}	n	Floating point multiplication
Graph problem	\#vertices and/or edges	Visiting a vertex or traversing_an_edge

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of inputsize

- Basic operation: the operation that contributes most towards the running time of the algorithm

Best-case, average-case, worst-case
For some algorithms efficiency depends on type of input:

- Worst case: $\mathrm{W}(n)$ - maximum over inputs of size n
- Best case: $\mathrm{B}(n)$ - minimum over inputs of size n
- Average case: $\mathrm{A}(n)$ - "average" over inputs of size n
- Number of times the basic operation will be executed on typica input
- NOT the average of worst and best case
- Expected number of basic operations repetitions considered as a random variable under some assumption about the probability distribution of all possible inputs of size n

Worst-case count, all operations

- Worst-case operations count, as a function of the input sizo

Algorithm $\operatorname{arrayMax}(\boldsymbol{A}, \mathrm{n})$	\# operations
currentMax $\leftarrow A[0]$	2
for $i \leftarrow 1$ to $n-1$ do	$1+n$
if $A[i]>$ currentMax then	$2(\boldsymbol{n}-1)$
currentMax $\leftarrow A[i]$	$2(n-1)$
$\{$ increment counter $\boldsymbol{i}\}$	2(n-1)
return currentMax	1
	Total $7 \boldsymbol{n}-2$

Best-case Count of All Operations

- Best-case operations count, as a function of the input size

Count of Basic Operations

- Let basic operation = key comparison
- Then best-case and worst-case same for this method

```Algorithm arrayMax \((A, n)\) currentMax \(\leftarrow A[0]\) for \(i \leftarrow 1\) to \(n-1\) do if \(A[i]>\) currentMax then \(\{\) increment counter \(\boldsymbol{i}\) \} currentMax \(\leftarrow A[i]\) return currentMax```	\# operations	
	$2(n-1$	
	Total	$2 \boldsymbol{n}-2$

## Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages $1(X, n)$
Input array $\boldsymbol{X}$ of $\boldsymbol{n}$ integers
Output array $\boldsymbol{A}$ of prefix averages of $\boldsymbol{X}$
$\boldsymbol{A} \leftarrow$ new array of $\boldsymbol{n}$ integers
for $i \leftarrow 1$ to $\boldsymbol{n}$ do
$s \leftarrow X[1]$
for $j \leftarrow 2$ to $i$ do $s \leftarrow s+X[j]$
$A[i] \leftarrow s / i$
return $A$

## Analysis of

 recPrefixSumAndAverage- Let's count all operations, worst-case. Use recurrence equation.
Algorithm recPrefixSumAndAverage $(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{n}) \quad \mathrm{T}(\mathrm{n})$ operations Input array $\boldsymbol{X}$ of $n \geq 1$ integer.

Empty array $\boldsymbol{A} ; \boldsymbol{A}$ is same size as $\boldsymbol{X}$
Output array $A[0] \ldots A[n-1]$ changed to hold prefix averages of $\boldsymbol{X}$. returns sum of $\boldsymbol{X}[0], X[1], \ldots, \boldsymbol{X}[n-1] \quad$ \#operations
if $n=1$
$A[0] \leftarrow X[0]$
return $A[0]$
tot $\leftarrow$ recPrefixSumAndAverage $(\boldsymbol{X}, \boldsymbol{A}, \boldsymbol{n}-1) \quad 3+\mathrm{T}(\mathrm{n}-1)$ tot $\leftarrow$ tot $+X[n-1]$
$A[n-1] \leftarrow$ tot $/ n$ return tot;

## Defining Worst [W(n)], Best $[B(N)]$, and Average [A(n)]

- Let $\mathrm{I}_{\mathrm{n}}=$ set of all inputs of size n .
- Let $\mathrm{t}(\mathrm{i})=$ \# of ops by alg on input i .
- $W(n)=$ maximum $t(i)$ taken over all $i$ in $I_{n}$
- $B(n)=$ minimum $t(i)$ taken over all $i$ in $I_{n}$
- $\mathrm{A}(\mathrm{n})=\sum_{i \in I_{n}} p(i) t(i), \mathrm{p}(\mathrm{i})=$ prob. of i occurring.
- We focus on the worst case
- Easier to analyze
- Usually want to know how bad can algorithm be
- average-case requires knowing probability; often difficult to determine

Analysis of prefixAverages1

- Let Basic Operation = key additions (additions between array elements)
- The running time of prefixAverages1 is $1+2+\ldots+\boldsymbol{n}-1$
- The sum of the first $n-1$ integers is $\boldsymbol{n}(\boldsymbol{n}-1) / 2$
- There is a simple visua proof of this fact
- Thus, algorithm prefixAverages 1 runs in $O\left(n^{2}\right)$ time



## Prefix Averages, Linear

- Recurrence equation
$-T(1)=6$
$-T(n)=13+T(n-1)$ for $n>1$.
- Solution of recurrence is
$-T(n)=13(n-1)+6$
- $T(n)$ is $O(n)$.


## Empirical analysis of time efficiency

- Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds) OR
- Count actual number of basic operations
- Analyze the empirical data


## Time efficiency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

- Decide on parameter $n$ indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best case for input of size $n$
- Set up summation for $C(n)$ reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)
v1.2


## Time efficiency of recursive algorithms

Steps in mathematical analysis of recursive algorithms:

- Decide on parameter $n$ indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best case for input of size $n$
- Set up a recurrence relation and initial condition(s) for $C(n)$-the number of times the basic operation will be executed for an input of size $n$ (alternatively count recursive calls).
- Solve the recurrence to obtain a closed form or estimate the order of magnitude of the solution (see Appendix B)


## Types of formulas for basic operation count

- Exact formula

$$
\text { e.g., } \mathrm{C}(n)=n(n-1) / 2
$$

- Formula indicating order of growth with specific multiplicative constant

$$
\text { e.g., } \mathrm{C}(n) \sim 0.5 n^{2}
$$

- Formula indicating order of growth with unknown multiplicative constant
e.g., $\mathrm{C}(n){ }^{\sim} \mathrm{c} n^{2}{ }_{v .2}$


## Example: Sequential search

- Problem: Given a list of $n$ elements and a search key $K$, find an element equal to $K$, if any.
- Algorithm: Scan the list and compare its successive elements with $K$ until either a matching element is found (successful search) of the list is exhausted (unsuccessful search)
- Worst case
- Best case
- Average case

