
1

v1.2 1

Algorithms, Design and 
Analysis

Introduction.
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Algorithm
• An algorithm is a sequence of 

unambiguous instructions for solving a 
problem, i.e., for obtaining a required 
output for any legitimate input in a 
finite amount of time.
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Computing Prefix Averages
• Input: Array X[1..n]

• Output: Array A[1..n] of 
prefix averages of X; i-th
prefix average = average of 
the first i elements of X:

A[i] = (X[1] + X[2] + … + X[i])/i

• Computing the array A of 
prefix averages of another 
array X has applications to 
financial analysis
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Prefix Averages (Quadratic)
• The following algorithm computes prefix averages in 

quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

1. A ← new array of n integers
2. for i ← 1 to n do
3. s ← X[1] 
4. for j ← 2 to i do
5. s ← s + X[j]
6. A[i] ← s / i
7. return A 
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Prefix Averages (Linear, non-
recursive)

• The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ← new array of n integers
s ← 0 
for i ← 1 to n do

s ← s + X[i]
A[i] ← s / i

return A 
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Prefix Averages (Linear)
• The following algorithm computes prefix averages in 

linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, k)
Input array X[1..n] of integers, integer k,  1 ≤ k ≤ n integer. 

Empty array A of same size as X.
Output array A[1…k] changed to hold prefix averages of X.

returns sum of X[1], X[2],…,X[k]
1. if k=1
2. A[1] ← X[1]
3. return A[1]
4. tot ← recPrefixSumAndAverage(X,A,k-1) 
5. tot ← tot + X[k]
6. A[k] ← tot / k
7. return tot;
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Selection sort
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Insertion sort
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Mystery algorithm

for i := 1 to n - 1 do
max := i ;

for j := i + 1 to n do
if |A[ j, i ]| > |A[ max, i ]| then max := j ;

for k := i  to n + 1 do
swap A[ i, k ]  with  A[ max, k ];

for j := i + 1 to n do
for k := n + 1 downto i do

A[ j, k ] := A[ j, k ]  - A[ i, k ] * A[ j, i ] / A[ i, i ] ;
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What is an algorithm?

• Recipe, process, method, technique, procedure, 
routine,… with following requirements:

1. Finiteness
b terminates after a finite number of steps

2. Definiteness
b rigorously and unambiguously specified

3. Input
b valid inputs are clearly specified

4. Output
b can be proved to produce the correct output given a valid input

5. Effectiveness
b steps are sufficiently simple and basic
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Pseudocode
• Mixture of English, math 

expressions,  and computer 
code

• Less detailed than a 
program

• Preferred notation for 
describing algorithms

• Hides program design 
issues

• Can write at different levels 
of detail. 

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
Step through each element in A,
updating currentMax when a 
bigger element is found

return currentMax

Very High-level 
pseudocode:
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Pseudocode 
• Mixture of English, math 

expressions,  and computer 
code

• Less detailed than a 
program

• Preferred notation for 
describing algorithms

• Hides program design 
issues

• Can write at different levels 
of detail.

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Detailed pseudocode
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Pseudocode Details
• Control flow

– if … then … [else …]
– while … do …
– repeat … until …
– for … do …
– Indentation replaces braces 

• Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

• Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
← Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other 

mathematical formatting 
allowed
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Time efficiency is analyzed by determining the 
number of repetitions of the basic operation as a 
function of input size

• Basic operation: the operation that contributes 
most towards the running time of the algorithm

T(n) ˜ copC(n)

Theoretical analysis of time 
efficiency

running time execution time
for basic operation

Number of times 
basic operation is 

executed

input size
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Input size and basic operation 
examples

Basic operationInput size measureProblem

Visiting a vertex or 
traversing an edge

#vertices and/or edgesGraph problem

Floating point 
multiplication

nCompute an

Floating point 
multiplication

Dimensions of matrices
Multiply two matrices of 
floating point numbers

Key comparison
Number of items in list 
n

Search for key in list of 
n items
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Best-case, average-case, worst-case
For some algorithms efficiency depends on type of input:

• Worst case:    W(n) – maximum over inputs of size n

• Best case:        B(n) – minimum over inputs of size n

• Average case: A(n) – “average” over inputs of size n
– Number of times the basic operation will be executed on typical 

input
– NOT the average of worst and best case
– Expected number of basic operations repetitions considered as a 

random variable under some assumption about the probability 
distribution of all possible inputs of size n
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Worst-case count, all 
operations

• Worst-case operations count, as a function of 
the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 2
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Best-case Count of All 
Operations

• Best-case operations count, as a function of the 
input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 0

{ increment counter i } 2(n − 1)
return currentMax 1

Total 5n
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Count of Basic Operations

• Let basic operation = key comparison
• Then best-case and worst-case same for this method

Algorithm arrayMax(A, n) # operations
currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i]

{ increment counter i }
return currentMax

Total 2n − 2
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Defining Worst [W(n)], Best 
[B(N)], and Average [A(n)]

• Let In = set of all inputs of size n. 
• Let t(i) = # of ops by alg on input i.
• W(n) = maximum t(i) taken over all i in In
• B(n) = minimum t(i) taken over all i in I n

• A(n) =                  , p(i) = prob. of i occurring.

• We focus on the worst case
– Easier to analyze
– Usually want to know how bad can algorithm be
– average-case requires knowing probability; often 

difficult to determine 

∑
∈ nIi

itip )()(
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Prefix Averages (Quadratic)
• The following algorithm computes prefix averages in 

quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

1. A ← new array of n integers
2. for i ← 1 to n do
3. s ← X[1] 
4. for j ← 2 to i do
5. s ← s + X[j]
6. A[i] ← s / i
7. return A 

v1.2 22

Analysis of prefixAverages1
• Let Basic Operation = key 

additions (additions between 
array elements)

• The running time of 
prefixAverages1 is
1 + 2 + …+ n -1

• The sum of the first n -1
integers is n(n - 1) / 2
– There is a simple visual 

proof of this fact
• Thus, algorithm 

prefixAverages1 runs in O(n2) 
time 
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Analysis of 
recPrefixSumAndAverage

• Let ’s count all operations, worst-case. Use recurrence 
equation. 

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of  n ≥ 1 integer. 

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1] #operations
if n=1 1

A[0] ← X[0] 3
return A[0] 2

tot ← recPrefixSumAndAverage(X,A,n-1) 3+T(n-1)
tot ← tot + X[n-1] 4
A[n-1] ← tot / n 4
return tot; 1
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Prefix Averages, Linear

• Recurrence equation
– T(1) = 6
– T(n) = 13 + T(n-1)  for  n>1.

• Solution of recurrence is 
– T(n) = 13(n-1) + 6 

• T(n) is O(n).
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Empirical analysis of time 
efficiency

• Select a specific (typical) sample of inputs
• Use physical unit of time (e.g.,  milliseconds) 

OR
• Count actual number of basic operations 

• Analyze the empirical data
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Types of formulas for basic 
operation count

• Exact formula
e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with 
specific multiplicative constant

e.g., C(n) ˜ 0.5 n2

• Formula indicating order of growth with 
unknown multiplicative constant

e.g., C(n) ˜ cn2
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Time efficiency of nonrecursive
algorithms

Steps in mathematical analysis of nonrecursive
algorithms:

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation
• Determine worst, average, and best case for input of 

size n
• Set up summation for C(n) reflecting algorithm’s loop 

structure
• Simplify summation using standard formulas (see 

Appendix A)
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Example: Sequential search

• Problem: Given a list of n elements and a search key 
K, find an element equal to K, if any.

• Algorithm: Scan the list and compare its successive 
elements with K until either a matching element is 
found (successful search) of the list is exhausted 
(unsuccessful search)

• Worst case

• Best case

• Average case
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Time efficiency of recursive algorithms
Steps in mathematical analysis of recursive algorithms:

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation

• Determine worst, average, and best case for input of size 
n

• Set up a recurrence relation and initial condition(s) for 
C(n)-the number of times the basic operation will be 
executed for an input of size n (alternatively count 
recursive calls). 

• Solve the recurrence to obtain a closed form or estimate 
the order of magnitude of the solution (see Appendix B)


