A divide-and-conquer closest pair algorithm, for TCSS 343. version 1.0.

DivConqClosestPair(S[1..n])

 Input: Array S[1..n] of points on 2D plane. Assumes S is sorted by x-coordinate.

 Output: 2 points from S that are closest together.

 If S has just one point, return error.

 If S has just two points, return them.

 Divide the points of S into S1 and S2,

with S1 containing S[1..n/2]

and S2 containing S[n/2+1..n].

 Pair1 (DivConqClosestPair(S1)

 Pair2 (DivConqClosestPair (S2)

// find the closest pair between sets S1 and S2.

 For each point P1 in S1

For each point P2 in S2

compute distance between P1 and P2;

 keep track of minimum distance pair in Pair3

 return either Pair1, Pair2, or Pair3, whichever has a valid pair closest together..

 What is the run-time of this algorithm? How would you improve it?

DivConqClosestPair2(S[1..n])

 Input: Array S[1..n] of points on 2D plane. Assumes S is sorted by x-coordinate.

 Output: 2 points from S that are closest together.

 If S has just one point, return error.

 If S has just two points, return them.

 Divide the points of S into S1 and S2,

with S1 containing S[1..n/2]

and S2 containing S[n/2+1..n].

 Pair1 (DivConqClosestPair2(S1)

 Pair2 (DivConqClosestPair2(S2)

// find the closest pair between sets S1 and S2.

 Let d = min(distance between points in Pair1, distance between points of Pair2)

 Let mid = average of (S[n/2].x, S[n/2+1].x)

 Find index i of point in S closest to but to the right of line x= mid – d

 Find index j of point in S closest to but to the left of line x= mid + d

 Let SS1 = S[i..n/2]

 Let SS2 = S[n/2+1 ..j]

 For each point P1 in SS1

For each point P2 in SS2

compute distance between P1 and P2;

 keep track of minimum distance pair in Pair3

 return either Pair1, Pair2, or Pair3, whichever has a valid pair closest together..

 What is the run-time of this algorithm? How would you improve it?

