A divide-and-conquer convex hull algorithm, for TCSS 343. version 1.0.

DivConqConvexHull(S)

  Input: Set of points S on 2D plane

  Output: Convex Hull of S, as list of points representing a polygon

  If S has just one point, return a list of size one of that point.

  If S has just two points, return a list of size two of those two points, with the 


minimum x-coordinate point first. 

  Find the minimum and maximum x-coordinate points in S; call them A and B

  Consider the line AB. (from point A to point B)

  Divide the points of S into two sets S1 and S2, 

with S1 containing points to the left of line AB

and S2 containing points to the right of line AB

  G1 ( ConvexHull(S1)

  G2 ( ConvexHull(S2)

  Combine Polygons G1, G2, and points A and B into one convex hull G. 


This can be done by starting at A, going clockwise around polygon G1 to B, 


and then going from B clockwise around polygon G2 back to A. 

  return G. 

This is not the same as QuickHull, the algorithm in the book. It is computationally much worse than QuickHull because it computes convex hulls of points that end up not being on the border.

QuickHull(S)

  Input: Set of points S on 2D plane

  Output: Convex Hull of S, as list of points representing a polygon

 // note: uses call to recursive QuickHullSection, described below.

  Find the minimum and maximum x-coordinate points in S; call them A and B.

 Divide the points of S into two sets S1 and S2, 

with S1 containing points to the left of line AB

and S2 containing points to the right of line AB

// now compute upper and lower hulls.

  UpperHull ( QuickHullSection(A,B, S1)

  LowerHull( QuickHullSection(B,A, S2)

  Combine polygons UpperHull and LowerHull into one polygon G. 


Note that UpperHull goes from A to B, and Lower Hull from B back to A,


so combining is concatenating the list of points and making sure B and A


are not duplicated

QuickHullSection(x1, x2, S)

  Input: Set of points S on 2D plane; points x1 and x2. All points in S are assumed to lie


to the left of the line from x1 to x2. 

  Output: Convex Hull Section of S from x1 to x2, as list of points representing a series of


connected lines, going clockwise from x1 to x2. 

   Find xmax, the point in S furthest away from the line x1 to x2.

   Remove from S the points that are in the triangle defined by x1, x2, and xmax

   Divide the remaining points in S into S1 and S2, where those in S1 are to the left of


line x1 to xmax; those in S2 are to the left of the line from xmax to x2.

   Make recursive calls to compute hull sections for S1 and S2

   Combine the results of the calls to return the required hull section for input S.

   Important note: The base case is purposely omitted in this description so that you can 

practice figuring it out.

Use the determinant formula in the book for checking:

1) Whether a point p3 is to the left of line p1 to  p2. 

2) The distance that a point p3 is from line p1 to p2.

