Computing and Software Systems 343, Autumn 2005
Mathematical Principles of Computing II

Dynamic Programming: practice problems. Version 1.0.

Practice Problems: (solutions are also available!)

1. Illustrate the performance of the line-breaking algorithm on this sentence with line width 16. As input, assume the entire paragraph consists of just the first sentence of this problem, starting from "Illustrate" and ending with "16.". Because we count spaces after the words, the first word has length 11, and the last word has length 4. Note that "line-breaking" should be considered one word of length 14. You should compute the optimal way of breaking into lines that gives the minimum penalty using the dynamic programming algorithm. At a minimum, you need to show the values of the array that holds the subproblem solutions

2. Consider the problem of determining how many distinct ways there are to give x cents in change using any coins from among pennies, nickels, dimes, quarters, and half-dollars. Here order does not matter, so that a penny, a dime, and a penny is the same as two pennies and a dime. As an example, there are six ways to give 17 cents change: a dime, a nickel, and two pennies; a dime and seven pennies; three nickels and two pennies; two nickels and seven pennies; one nickel and 12 pennies; and 17 pennies. Design a dynamic programming algorithm that solves this problem

a. Describe the subproblems you wish to solve for your dynamic programming solution.

b. Write your algorithm in pseudocode.

3. How can we modify the dynamic programming algorithm for the knapsack problem from simply computing the best value to computing the subset that gives the best value?

4. Let S={a,b,c,d,e,f,g} be a collection of objects with (value,weight) pairs as follows: a:(12,4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f:(7,1), g: (9,6). What is an optimal solution for the knapsack problem on S, assuming we have a sack that can hold objects with total weight 18? Show your work.

5. In this problem, we will study the change making problem. In this problem, you are given n coin denominations in cents:
cn > cn-1 > … > c1, and an amount x in change, and you want to return the number of coins needed to make x in change. For the dynamic programming solution, you should return an optimal solution representing the fewest number of coins possible that will make x cents in change. You may assume that c1 = 1, so that it is always possible to make amount x in change. Your algorithm should output the number of coins required

a. Describe the subproblems you wish to solve for your dynamic programming solution.

b. Implement a dynamic programming solution in Java; it should print out the fewest number of coins necessary for making change.

c. Analyze the worst-case running-time and space requirements for your solution, in terms of n and x.

6. The line-breaking problem revisited: This is the line breaking problem: Given array w of word lengths, w[0], w[1], … w[n-1]; n total words; and line width limit L. Return minimum total penalty, where penalty is sum of each line penalty, and each line penalty is the number of extra spaces cubed, except for the last line that has penalty 0. The dynamic programming solution in the slides uses lineB[k] to store the minimum penalty when placing words w[k], w[k+1], .. w[n-1] onto lines. Write a recursive programming solution to the linebreaking problem, that does not use dynamic programming, but does follow the subproblem definition in the dynamic programming version on the slides.

2

