
CS 1510 Dynamic Programming Homework Problems

1. Consider the recurrence relation T (0) = T (1) = 2 and for n > 1

T (n) =

n−1∑

i=1

T (i)T (i − 1)

We consider the problem of computing T (n) from n.

(a) Show that if you implement this recursion directly in say the C programming language, that the
program would use exponentially, in n, many arithmetic operations.

(b) Explain how, by not recomputing the same T (i) value twice, one can obtain an algorithm for this
problem that only uses O(n2) arithmetic operations.

(c) Give an algorithm for this problem that only uses O(n) arithmetic operations.

†

2. Give a polynomial time algorithm that takes three strings, A, B and C, as input, and returns the
longest sequence S that is a subsequence of A, B, and C.

†

3. Give an efficient algorithm for finding the shortest common super-sequence of two strings A and B. C
is a super-sequence of A if and only if A is a subsequence of C.

HINT: Obviously this problem is very similar to the problem of finding the longest common sub-
sequence. You should try to first figure out how to compute the length of the shortest common
super-sequence.

††

4. Consider the algorithm that you developed for the previous problem.

(a) Show the table that your algorithm constructs for the inputs A = zxyyzz, and B = zzyxzy

(b) Explain how to find the length of the shortest common super-sequence in your table.

(c) Explain how to compute the actual shortest common super-sequence from your table by tracing
back from the table entry that gives the length of the shortest common super-sequence.

†

5. The input to this problem is a pair of strings A = a1 . . . am and B = b1 . . . bn. The goal is to convert
A into B as cheaply as possible. The rules are as follows. For a cost of 3 you can delete any letter.
For a cost of 4 you can insert a letter in any position. For a cost of 5 you can replace any letter by
any other letter. For example, you can convert A = abcabc to B = abacab via the following sequence:
abcabc at a cost of 5 can be converted to abaabc, which at cost of 3 can be converted to ababc, which
at cost of 3 can be converted to abac, which at cost of 4 can be converted to abacb, which at cost of 4
can be converted to abacab. Thus the total cost for this conversion would be 19. This is almost surely
not the cheapest possible conversion.

††

NOTE: The Unix diff command essentially solves this problem.

6. Find the optimal binary search tree for keys K1 < K2 < K3 < K4 < K5 where the access probabil-
ities/weights are .5, .05, .1, .2, .25 respectively using the algorithm discussed in class and in the notes.
Construct one table showing the optimal expected access time for all subtrees considered in the algo-
rithm, and another showing the roots of the optimal subtrees computed in the other table. Show how
to use the table of roots to recompute the tree.

†

7. Assume that you have an n by n checkerboard. You must move a checker from the bottom left corner
square the board to the top right corner square. In each step you may either 1) move the checker up
one square, or 2) move the checker diagonally one square up and to the right, or 3) move the checker
right one square. If you move a checker from square x to square y you get p(x, y) dollars. You are
told all of the p(x, y) a priori. The p(x, y) may be negative, zero or positive. You want to get as much
money as possible. Give an efficient algorithm, say the number of steps should be polynomial in n, for
this problem.

NOTE: I know that this can be solved without really using dynamic programming, but please as an
exercise try to use dynamic programming.

†

8. Find the optimal order, and its cost, for evaluating the matrix product

A1 × A2 × A3 × A4 × A5

where A1 is 10 × 4, A2 is 4 × 5, A3 is 5 × 20, A4 is 20× 2, and A5 is 2 × 50.

†

9. Give an efficient algorithm for the following problem. The input is an n sided convex polygon. Assume
that the polygon is specified by the Cartesian coordinates of its vertices. The output should be the
triangulation of the polygon into n − 2 triangles that minimizes the sums of the perimeters of the
into triangles. Note that this is equivalent to minimizing the length of the cuts required to create the
triangle.

HINT: This is very similar to the matrix multiplication problem in the text.

HINT HINT: Fix a side of the polygon and call it e. How many possible triangles are there that contain
e? For each such triangle compute the number of triangulations that contain that triangle.

† † †

10. Design a recursive linear time algorithm that given a rooted binary tree will compute the balance factor
of each node in the tree. The balance factor of a node is the difference in the heights of its children.
The height of a node x is the number of nodes in the longest path from x to some descendent of x.

HINT: You will need to strengthen the induction hypothesis slightly to compute move information
than the balance factor of each node.

†

11. The input to this problem is a sequence S of integers (not necessarily positive). The problem is to find
the consecutive subsequence of S with maximum sum. “Consecutive” means that you are not allowed
to skip numbers. For example if the input was

12,−14, 1, 23,−6, 22,−34, 13

the output would be 1, 23,−6, 22. Give a linear time algorithm for this problem.

HINT: As a first step you might determine why a naive recursive solution is not possible. That is,
figure out why knowing the nth number, and the maximum consecutive sum of the first n-1 numbers,
is not sufficient information to compute the maximum consecutive sum of the first n numbers. There
examples, which show you need to strengthen the inductive hypothesis, should give you a big hint how
to strengthen the inductive hypothesis.

HINT HINT: Strengthen the inductive hypothesis to compute two different different consecutive sub-
sequences, the maximum consecutive sum subsequence, and one other one.

††

12. The input to this problem is a tree T with integer weights on the edges. The weights may be negative,
zero, or positive. Give a linear time algorithm to find the shortest simple path in T . The length of a
path is the sum of the weights of the edges in the path. A path is simple if no vertex is repeated. Note
that the endpoints of the path are unconstrained.

HINT: This is very similar to the problem of finding the largest independent set in a tree.

† † †

13. Consider the following variant to the Towers of Hanoi puzzle. Assume that the pegs are placed at the
vertices A, B, and C of an equilateral triangle. Further assume that we add the following restrictions
to the rules: Discs my only be moved in clockwise order. So, any disc moved from peg A must go to
peg B, any disc moved from peg B must go to peg C, and any disc moved from peg C must go to peg
A. Assume all discs start on peg A. It is still the case that you only can move one disc at a time, and
that no larger disc can go on top of a smaller disc. The goal is to get all the discs to peg B using the
fewest possible number of disc moves. Give an algorithm for this problem.

HINT: Use recursion. You will have to strengthen the inductive hypothesis.

††

14. The input for this problem consists of n keys K1, . . . , Kn, with K1 < K2 < . . . , Kn, and associated
probabilities p1, . . . , pn. The problem is to find the AVL tree for these keys that minimizes the expected
depth of a key. An AVL tree is a binary search tree with the property that every node has balance
factor −1, 0, or 1. Give a polynomial time algorithm for this problem.

HINT: You will have to strengthen the inductive hypothesis. Obviously the height of a subtree is
relevant.

††

15. The input consists of n intervals over the real line. The output should be a collection C of non-
overlapping intervals such the sum of the lengths of the intervals in C is maximized. Give a polynomial
time algorithm for this problem.

HINT: Strengthen the induction hypothesis. Consider the intervals by increasing order of their left
endpoints. Just like in the Longest Increasing Subsequence (LIS) problem, there are two pieces of
information that are relevant about a partial solution. One is obviously the length of the intervals,
what is the other? Think about what the answer was in the LIS problem.

††

16. Consider the code for the Knapsack program given in the class notes. Explain how one can actually find
the highest valued subset of objects, subject to the weight constraint, from the Value table computed
by this code.

†

17. Explain how to solve the Knapsack problem using only O(L) memory/space and O(nL) time. You
need only find the value and weight of the optimal solution, not the actual collection of objects.

†

18. Give an algorithm for the following problem whose running time is polynomial in n + L.

Input: positive integers v1, . . . , vn, with L =
∑n

i=1
vi.

Output: A solution (if one exists) to
∑n

i=1
(−1)xivi = 0 where each xi is either 0 or 1.

HINT: Very similar to subset sum algorithm.

††

19. Give an algorithm for the following problem whose running time is polynomial in n + logL:

Input: positive integers v1, . . . , vn and L.

Output: A solution (if one exists) to (
∑n

i=1
xivi) mod n = L mod n where each xi is either 0 or 1.

Here x mod y means the remainder when x is divided by y.

HINT: This is like the subset sum problem but you will have to be more severe in your pruning since
you can’t afford to have L partial solutions anymore.

††

20. Give an algorithm for the following problem whose running time is polynomial in n + W :

Input: positive integers w1, . . . , wn, v1, . . . , vn and W .

Output: The maximum possible value of
∑n

i=1
xivi subject to

∑n

i=1
xiwi ≤ W and each xi is a

nonnegative integer.

HINT: The tree of feasible solutions will be different than the one in the knapsack/subset sum problem
since you may include an item in the final sum more than once. Each node in the tree of feasible
solutions may now have up to W children.

††

21. Give an algorithm for the following problem whose running time is polynomial in n + L, where L =
max(

∑n

i=1
v3

i ,
∏n

i=1
vi).

Input: positive integers v1, . . . , vn

Output: A subset S of the integers such that
∑

vi∈S v3

i =
∏

vi∈S vi.

††

22. The input to this problem is a set of n gems. Each gem has a value in dollars and is either a ruby or
an emerald. Let the sum of the values of the gems be L. The problem is to determine if it is possible
to partition of the gems into two parts P and Q, such that each part has the same value, the number
of rubies in P is equal to the number of rubies in Q, and the number of emeralds in P is equal to the
number of emeralds in Q. Note that a partition means that every gem must be in exactly one of P or
Q. You algorithm should run in time polynomial in n + L.

HINT: Start as in the subset sum example. Your pruning rule will have to be less severe. That is, first
ask yourself why you may not be able to prune two potential solutions that have the same aggregate
value.

††

23. The input to this problem consists of an ordered list of n words. The length of the ith word is wi, that
is the ith word takes up wi spaces. (For simplicity assume that there are no spaces between words.)
The goal is to break this ordered list of words into lines, this is called a layout. Note that you can not
reorder the words. The length of a line is the sum of the lengths of the words on that line. The ideal
line length is L. No line may be longer than L, although it may be shorter. The penalty for having a
line of length K is L−K. The total penalty is the maximum of the line penalties. The problem is to
find a layout that minimizes the total penalty. Give a polynomial time algorithm for this problem.

HINT: Consider whether how many layouts of the first m words, which have k letters on the last line,
you need to remember.

††

24. The input to this problem is two sequences T = t1, . . . , tn and P = p1, . . . , pk such that k ≤ n, and
a positive integer cost ci associated with each ti. The problem is to find a subsequence of of T that
matches P with maximum aggregate cost. That is, find the sequence i1 < . . . < ik such that for all j,
1 ≤ j ≤ k, we have tij

= pj and
∑k

j=1
cij

is maximized.

††

25. The input to this problem is a sequence of n points p1, . . . pn in the Euclidean plane. You are to find
the shortest routes for two taxis to service these requests in order. Let us be more specific. The two
taxis start at the origin. If a taxi visits a point pi before pj then it must be the case that i < j. (Stop

and think about what this last sentence means.) Each point must be visited by at least one of the two
taxis. The cost of a routing is just the total distance traveled by the first taxi plus the total distance
traveled by the second taxi. Design an efficient algorithm to find the minimum cost routing.

HINT: Use dynamic programming. Consider exhaustively enumerating the possible tours one point at
a time. So after the ith stage you would consider all ways to visit the points p1, . . . , pi. Then find a
pruning rule that will reduce the number of tours we need to remember down to a polynomial number.

††

26. The input to this problem is n points x1, . . . , xn on a line. A good path P has the property that one
endpoint of P is the origin and every xi is covered by P . Note that P need not be simple, that is, it
can backtrack over territory that it has already covered. Assume a vehicle moves along this path from
the origin at unit speed. The response time ri for each xi is the time until the vehicle first reaches
xi. The problem is to find the good path that minimizes

∑n

i=1
ri/n, the average response time. For

example, if the points are x1 = 1 x2 = 8 and x3 = −2 and the path visited the points in the order
x1, x3, x2, the average response time for this path would be 1/3 + (1 + 3)/3 + (1 + 3 + 10)/3. Give a
polynomial time algorithm for this problem.

27. Consider the problem where the input is a collection of n train trips within Germany. For the ith trip
Ti you are given the date di of that trip, and the non-discounted fare fi for that trip. The German
railway system sells a Bahncard for 240 Marks that entitles you to a 50% fare reduction on all train
travel within Germany within 1 year of purchase. The problem is to determine when to buy a Bahncard
to minimize the total cost of your travel.

For example if the input was d1 = January 11, 1997, f1 = 20 Marks, d2 = February 11, 1998, f2 = 200
Marks, d3 = January 11, 1999, f3 = 200 Marks, d4 = March 13, 1999, f4 = 100 Marks, d5 = February
11, 2002, f5 = 200 Marks, and d6 = January 11, 2003, f6 = 600 Marks, then you might buy a Bahncard
on February 11, 1998, and February 11, 2002, resulting in a total cost of 1200 Marks.

Give a polynomial time algorithm for this problem. The running time of you algorithm should be
independent of the cost of a Bahncard.

††

28. Give a polynomial time algorithm for the following problem. The input consists of a sequence R =
R0, . . . , Rn of non-negative integers, and an integer k. The number Ri represents the number of
users requesting some particular piece of information at time i (say from a www server. If the
server broadcasts this information at some time t, the the requests of all the users who requested the
information strictly before time t are satisfied. The server can broadcast this information at most
k times. The goal is to pick the k times to broadcast in order to minimize the total time (over all
requests) that requests/users have to wait in order to have their requests satisfied.

As an example, assume that the input was R = 3, 4, 0, 5, 2, 7 (so n = 6) and k = 3. Then one possible
solution (there is no claim that this is the optimal solution) would be to broadcast at times 2, 4, and
7 (note that it is obvious that in every optimal schedule that there is a broadcast at time n + 1 if
Rn 6= 0). The 3 requests at time 1 would then have to wait 1 time unit. The 4 requests at time 2
would then have to wait 2 time units. The 5 requests at time 4 would then have to wait 3 time units.
The 2 requests at time 5 would then have to wait 2 time units. The 7 requests at time 6 would then
have to wait 1 time units. Thus the total waiting time for this solution would be

3 ∗ 1 + 4 ∗ 2 + 5 ∗ 3 + 2 ∗ 2 + 7 ∗ 1

††

29. Assume that you are given a collection B1, . . . , Bn of boxes. You are told that the weight in kilograms
of each box is an integer between 1 and some constant L, inclusive. However, you do not know the
specific weight of any box, and you do not know the specific value of L. You are also given a pan
balance. A pan balance functions in the following manner. You can give the pan balance any two

disjoint sub-collections, say S1 and S2, of the boxes. Let |S1| and |S2| be the cumulative weight of the
boxes in S1 and S2 , respectively. The pan balance then determines whether |S1| < |S2|, |S1| = |S2|,
or |S1| > |S2|. You have nothing else at your disposal other than these n boxes and the pan balance.
The problem is to determine if one can partition the boxes into two disjoint sub-collections of equal
weight. Give an algorithm for this problem that makes at most O(n2 L) uses of the pan balance.

† † †

30. Give a algorithm that takes a positive integer n as input, and computes the number of possible orderings
of n objects under the relations < and =. For example, if n = 3 the 13 possible orderings are as follows:
a = b = c, a = b < c, a < b = c, a < b < c, a < c < b, a = c < b, b < a = c, b < a < c, b < c < a,
b = c < a, c < a = b, c < a < b, and c < b < a. Your algorithm should run in time polynomial in n.

† † †

