“Certain truths require more than proofs, they have to be felt”

To better understand the relationship between analysis and “real life” we shall solve the max_segement_weight problem using different algorithms. Each algorithm will be analyzed, implemented and tested.

Algorithm_1:
generate all segments;

Compare each segment with the current max_segement;

Return max_segment.

Running time: O(n3) (makes 1/6 (n3 – n) additions).

Algorithm_2: for k from 1 to n do

Generate all segments beginning at location k;

Compare each segment with the current max_segement;

Return max_segment.

Running time: Try to calculate
Algorithm_3: maxSegment(A[l..r]);

MaxS_1 := maxSegment(A[l..(l+r)/2];

MaxS_2 := maxSegment(A[(l+r)/2+ 1..r];

MaxS_3 := maxSpan(A[l..r]);

Return max(MaxS_1, MaxS_2, MaxS_3);

Running time: Try to calculate

Algorithm_4: current (0; largest (0;

For k from 1 to n do

Current (current + A[k];

If Current > largest then largest (current;

Return largest;

Running time: Try to calculate

Implement all 4 methods. In your implementation add a parameter num that will process only the first num integers in the array. To make the field even, the array should be loaded from a file called c:\tcss343\numbers.txt.

Create a table that will show the running time of each method for lists with 20,000 integers, 40,000, 60,000 etc. Run the four methods so that the fastest method runs first. Also provide the user the ability to enter the size of the list to process.

Be prepared to answer questions of the following form: how large a list can be processed in n ms?

“Analyze these…”

 functionOne(n)

r := 0;

for k := 1 to n do

 for j := k + 1 to n do

 for m := 1 to j do

r := r + 1;

return r;

 functionTwo(n)

r := 0;

for i := 1 to n do

 for j := 1 to i do

 for k := j to j+i do

r := r + 1;

return r;

 functionThree(n)

r := 0;

for i := 1 to n do

 for j := 1 to i do

 for k := j to j+i do

for s := 1 to i+j-k do

r := r + 1;

return r;

 functionThree(n)

r := 0;

for i := 1 to n do

 for j := 1 to i do

 for k := j + i - 1 to n do

r := r + 1;

return r;

Recurrence relations

1. T(n) = 3T(n – 1) + 2; T(1) = 1

2. T(n) = T(n – 1) + n – 1; T(1) = 2

3. T(n) = 2T((n/2() + 6n – 1; T(1) = 1

4. T(n) = 3T((n/2() + n2 – 2n + 1; T(1) = 4

5. T(n) = 4T((n/3() + 3n – 5; T(1) = 1

6. T(n) = 1 +
[image: image1.wmf]å

-

=

1

1

)

(

n

i

i

T

T(1) = 1;

7. T(n) = 1 +
[image: image2.wmf]å

-

=

-

+

1

1

)

(

)

(

(

n

i

i

n

T

i

T

T(1) = 1;

_1166971613.unknown

_1166971760.unknown

