TCSS 343 review sheet.

1. algorithm sum_list(list L)

input: List L of n integers

            output: sum of integers in list

            if L.size=0 return 0;

            else 

                  data = first integer in L.

                  rest_of_list = L with first item removed

                  return data + sum_list(rest_of_list);

           Write a recurrence equation for the number of worst-case additions 
               in the code above, where the input size parameter = length of input list 

2. algorithm fib(n)

input: integer n

output: nth fibonacci number

  if n=0 return 0 

  if n=1 return 1

  return fib(n-1) + fib(n-2);

a. Write a recurrence equation for the exact number of comparisons

b. Write a recurrence equation for the exact number of additions.

c. Write a recurrence equation for the exact number of subtractions.

d. Write a recurrence equation for the exact number of comparisons, additions and subtractions combined.  

3. algorithm trinary_search(A[i..j], k)

input: A Sorted Array A of integers; indices i&j to search over in A, and an integer key k

output: true of k is in array A between indexes i & j; false otherwise.

    searchlen ( j - i+1

    if searchlen <6

       for q(i to j do

         if a[q] = k then return true

       return false

   mid1 = searchlen/3 + i;

   mid2 = searchlen/3+mid1;

   if (k<A[mid1])

        return trinary_search(A[i..mid1-1],k)

   if (k < A[mid2])

        return trinary_search(A[mid1..mid2-1],k)

   return trinary_search(A[mid2..j],k)

a. Write an recurrence equation for the worst-case exact number of key comparisons. 

4. Consider the following Mergesort-like program, based on Merge from the book (p. 124). 
Algorithm Merge3Sort(A[0..n-1])
  Input: Array A with n items
  Output: Array A sorted 
if n > 2
   copy A[0..(n/3(-1] to B[0..(n/3(-1]
   copy A[(n/3(..2(n/3(-1] to C[0..(n/3(-1]
   copy A[2(n/3(..n-1] to D[0..n-2(n/3(-1]
   Merge3Sort(B)
   Merge3Sort(C)
   Merge3Sort(D)
   Merge(B,C,T) // use Merge described in the book.
   Merge(T,D,A) // use Merge described in the book.
   return A
else if n=2
    if A[0] > A[1] then swap A[0] and A[1]
    return A
else return A 

a. Write a recurrence equation representing the worst-case cost of your Merge3sort algorithm, in terms of key comparisons (comparisons between items in the input Array).

5. Algorithm TriominoTile(B, P)
  Input: Square board B of size 2n by 2n and one location P of the board B with a  missing square. 
  Output: copy of board B modified so that it is tiled with triominoes, except for at the missing square. 
  If n=1, we have a 2 by 2 board, and we create a tiling by putting a triomino on the 3 non-missing squares, and return the tiling. 
  Otherwise, we conceptually we divide the board into 4 pieces by splitting it vertically and horizontally. This means we create topleft, topright, bottomleft, and bottomright boards, each of size 2n-1 by 2n-1. 
  For each x in {topleft, topright, bottomleft, bottomright} do 
  
if P (the missing piece) is in x, then x ( TriominoTile(x,P)
     
else x ( TriominoTile(x,P2), where P2 is the location closest to the
               “center of B” (when x is considered as part of the original board B). 
  Combine the 4 subpieces into a new board B2 (of size 2n by 2n). 
  There should now be room for exactly one triomino in B2, this triomino will be in the center of B2. Put a triomino there, and return B2.

Write a recurrence equation representing the worst-case # of accesses to board locations, including the creation of boards. That is, “marking a board location” as containing a tile would be an access, as would be creating a board location. Thus, creating a 4 x 4 board would be 4*4=16 operations.

Solve the following recurrence equations exactly:

1. T(n) = 2T(n/2) + 2n; T(1) = 1

2. T(n) = 3 T(n/3) + 1; T(3) = 0

3. T(n) = T(n/2) + n; T(1) = 5

4. T(n) = T(n-1) + 2n2; T(0)=1

5. T(n) = 2T(n-1) + 1; T(1) = 1

