Algorithms, Design and Analysis

Introduction.

v1.2

Algorithm

 An <u>algorithm</u> is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

v1.2 2

Computing Prefix Averages

- Input: Array X[1..n]
- Output: Array A[1..n] of prefix averages of X; i-th prefix average = average of the first i elements of X:
- A[i] = (X[1] + X[2] + ... + X[i])/i
- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

 The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages I(X, n)
Input array X of n integers
Output array A of prefix averages of X

1. A \leftarrow new array of n integers
1. for i \leftarrow 1 to n do
2. s \leftarrow X[1]
2. for j \leftarrow 2 to i do
3. s \leftarrow s + X[j]
4. s \leftarrow s + x[j]
5. s \leftarrow s + x[j]
6. s \leftarrow s + x[j]
7. return s \leftarrow s + x[j]
```

Prefix Averages (Linear, non-recursive)

v1.2

• The following algorithm computes prefix averages in linear time by keeping a running sum

```
Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X
A \leftarrow \text{new array of } n \text{ integers}
s \leftarrow 0
\text{for } i \leftarrow 1 \text{ to } n \text{ do}
s \leftarrow s + X[i]
A[i] \leftarrow s / i
return A
```

v1.2 5

Prefix Averages (Linear)

 The following algorithm computes prefix averages in linear time by computing prefix sums (and averages)

```
Algorithm recPrefixSumAndAverage(X, A, k)
Input array X[1..n] of integers, integer k, 1 \le k \le n integer.

Empty array A of same size as X.

Output array A[1...k] changed to hold prefix averages of X.

returns sum of X[1], X[2],...,X[k]

if k=1

A[1] \leftarrow X[1]

return A[1]

tot \leftarrow recPrefixSumAndAverage(X,A,k-1)

tot \leftarrow tot +X[k]

A[k] \leftarrow tot /k

return A[t]
```

```
Selection sort
Algorithm SelectionSort(A[0..n 1])
//The algorithm sorts a given array by selection sort
//Input: An array A[0..n 1] of orderable elements
//Output: Array A[0..n 1] sorted in ascending order
for i + 0 to n 2 do
    for j \leftarrow i+1 to n-1 do
       if A[j] < A[min] \quad min \leftarrow j
    swap A|t| and A[min]
```

```
Insertion sort
  /Sorts a given army be insertion sort
//Input: An array A(0,n-1) of n orderable elements
//Output: Array A(0,n-1) sorted in nondecreasing to
defor s-1 to n-1 do
           -[ to n = 1 do

n = A[j]

j = i = 1

while j \ge 1 and A[j] > i do

A[j+1] = A[j]

j = j = 1

A[j+1] = i
                                                                         v1.2
```

Mystery algorithm

```
for i := 1 to n - 1 do
   max := i;
   for j := i + 1 to n do
       if |A[j, i]| > |A[max, i]| then max := j;
   for k := i to n + 1 do
       swap A[i, k] with A[max, k];
   for j := i + 1 to n do
       for k := n + 1 downto i do
           A[j, k] := A[j, k] - A[i, k] * A[j, i] / A[i, i];
```

What is an algorithm?

- Recipe, process, method, technique, procedure, routine,... with following requirements:
- 1. Finiteness
 - \mathcal{Q} terminates after a finite number of steps
- 2. Definiteness
 - \mathcal{Q} rigorously and unambiguously specified
- 3. Input
 - $\boldsymbol{\mathcal{Q}}\ \ \text{valid inputs are clearly specified}$
- 4. Output
 - $\ensuremath{\mathfrak{Q}}$ can be proved to produce the correct output given a valid input
- 5. Effectiveness
 - $\ensuremath{\mathcal{Q}}$ steps are sufficiently simple and basic

10

Pseudocode

- Mixture of English, math expressions, and computer Less detailed than a
- program
- Preferred notation for describing algorithms
- Hides program design issues
- · Can write at different levels of detail.

Very High-level oseudocode

Algorithm arrayMax(A, n) **Input** array **A** of **n** integers Output maximum element of A

 $currentMax \leftarrow A[0]$ Step through each element in A, updating *currentMax* when a bigger element is found return currentMax

v1.2 11

Pseudocode

- Mixture of English, math expressions, and computer
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
- · Can write at different levels of detail.

Detailed pseudocode

Algorithm arrayMax(A, n) Input array A of n integers Output maximum element of A

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n-1 do if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

v1.2 12

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>

 <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

Input size and basic operation examples

Problem	Input size measure	Basic operation
Search for key in list of n items	Number of items in list	Key comparison
Multiply two matrices of floating point numbers	Dimensions of matrices	Floating point multiplication
Compute a ⁿ	n	Floating point multiplication
Graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge

v1.2

15

Best-case, average-case, worst-case

For some algorithms efficiency depends on type of input:

- Worst case: W(n) maximum over inputs of size n
- Best case: B(n) minimum over inputs of size n
- Average case: A(n) "average" over inputs of size n

 Number of times the basic operation will be executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations repetitions considered as a random variable under some assumption about the probability distribution of all possible inputs of size n

1.2 16

Worst-case count, all operations

 Worst-case operations count, as a function of the input size

v1.2 17

Best-case Count of All Operations

Best-case operations count, as a function of the input size

```
Algorithm arrayMax(A, n) # operations currentMax \leftarrow A[0] 2 1+n if A[i] > currentMax then currentMax \leftarrow A[i] 0 { increment counter i } 2(n-1) return currentMax 1
```

v1.2 18

Count of Basic Operations

- Let basic operation = key comparison
- · Then best-case and worst-case same for this method

```
Algorithm arrayMax (A. n)
                                                 # operations
   currentMax \leftarrow A[0]
   for i \leftarrow 1 to n-1 do
         if A[i] > currentMax then
                                              2(n-1)
                  currentMax \leftarrow A[i]
   { increment counter i }
   return currentMax
                                              Total
                                                        2n - 2
                             v1.2
                                                                     19
```

Defining Worst [W(n)], Best [B(N)], and Average [A(n)]

- Let I_n = set of all inputs of size n.
- Let t(i) = # of ops by alg on input i.
- W(n) = maximum t(i) taken over all i in I_n
- B(n) = minimum t(i) taken over all i in I_n
- A(n) = $\sum_{i \in I_n} p(i)t(i)$, p(i) = prob. of i occurring.
- · We focus on the worst case
 - Easier to analyze
 - Usually want to know how bad can algorithm be
 - average-case requires knowing probability; often difficult to determine

20

Prefix Averages (Quadratic)

· The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages1(X, n)
  Input array X of n integers
   Output array A of prefix averages of X
1. A \leftarrow new array of n integers
2. for i \leftarrow 1 to n do
        s \leftarrow X[1]
        for j \leftarrow 2 to i do
                s \leftarrow s + X[j]
        A[i] \leftarrow s / i
   return 4
                                                                        21
```

Analysis of prefixAverages1 Let Basic Operation = key additions (additions between array elements) 6 5 The running time of prefixAverages1 is 1 + 2 + ... + n - 1The sum of the first n-1integers is n(n-1)/22 There is a simple visual proof of this fact 1 Thus, algorithm prefixAverages1 runs in $O(n^2)$ time

Analysis of recPrefixSumAndAverage

· Let's count all operations, worst-case. Use recurrence quation

```
{\bf Algorithm}\ recPrefixSumAndAverage}(X,A,n)
                                                         T(n) operations
   Input array X of n^3 1 integer.
          Empty array A; A is same size as X.
   Output array A[0]...A[n-1] changed to hold prefix averages of X.
          returns sum of X[0], X[1],...,X[n-1]
                                                          #operations
         A[0] \leftarrow X[0]
         return A[0]
   tot \leftarrow recPrefixSumAndAverage(X,A,n-1)
   tot \leftarrow tot + X[n-1]
   A[n-1] \leftarrow tot / n
   return tot
                                v1.2
                                                                        23
```

Prefix Averages, Linear

v1.2

- Recurrence equation
 - -T(1) = 6
 - -T(n) = 13 + T(n-1) for n>1.
- · Solution of recurrence is
 - -T(n) = 13(n-1) + 6
- T(n) is O(n).

v1.2

Empirical analysis of time efficiency

- · Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds)
- · Count actual number of basic operations
- · Analyze the empirical data

v1.2 25

Types of formulas for basic operation count

· Exact formula

e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific multiplicative constant

e.g., C(n) ~ 0.5 n²

 Formula indicating order of growth with unknown multiplicative constant

e.g., C(n) ~ cn2 v1.2

26

Time efficiency of nonrecursive algorithms

Steps in mathematical analysis of nonrecursive algorithms:

- Decide on parameter *n* indicating *input size*
- · Identify algorithm's basic operation
- Determine <u>worst</u>, <u>average</u>, and <u>best</u> case for input of size n
- Set up summation for C(n) reflecting algorithm's loop structure
- Simplify summation using standard formulas (see Appendix A)

v1.2 27

Example: Sequential search

- Problem: Given a list of n elements and a search key
 K, find an element equal to K if any.
- Algorithm: Scan the list and compare its successive elements with K until either a matching element is found (successful search) of the list is exhausted (unsuccessful search)
- · Worst case
- Best case
- · Average case

v1.2 28

Time efficiency of recursive algorithms

Steps in mathematical analysis of recursive algorithms:

- Decide on parameter n indicating input size
- · Identify algorithm's basic operation
- Determine <u>worst</u>, <u>average</u>, and <u>best</u> case for input of size n
- Set up a recurrence relation and initial condition(s) for C(n)-the number of times the basic operation will be executed for an input of size n (alternatively count recursive calls).
- Solve the recurrence to obtain a closed form or estimate the order of magnitude of the solution (see Appendix B)

5