
1

v1.2 1

Algorithms, Design and
Analysis

Introduction.

v1.2 2

Algorithm
• An algorithm is a sequence of

unambiguous instructions for solving a
problem, i.e., for obtaining a required
output for any legitimate input in a
finite amount of time.

v1.2 3

Computing Prefix Averages
• Input: Array X[1..n]

• Output: Array A[1..n] of
prefix averages of X; i-th
prefix average = average of
the first i elements of X:

A[i] = (X[1] + X[2] + … + X[i])/i

• Computing the array A of
prefix averages of another
array X has applications to
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X
A

v1.2 4

Prefix Averages (Quadratic)
• The following algorithm computes prefix averages in

quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

1. A ← new array of n integers
2. for i ← 1 to n do
3. s ← X[1]
4. for j ← 2 to i do
5. s ← s + X[j]
6. A[i] ← s / i
7. return A

v1.2 5

Prefix Averages (Linear, non-
recursive)

• The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X
A ← new array of n integers
s ← 0
for i ← 1 to n do

s ← s + X[i]
A[i] ← s / i

return A

v1.2 6

Prefix Averages (Linear)
• The following algorithm computes prefix averages in

linear time by computing prefix sums (and averages)

Algorithm recPrefixSumAndAverage(X, A, k)
Input array X[1..n] of integers, integer k, 1 ≤ k ≤ n integer.

Empty array A of same size as X.
Output array A[1…k] changed to hold prefix averages of X.

returns sum of X[1], X[2],…,X[k]
1. if k=1
2. A[1] ← X[1]
3. return A[1]
4. tot ← recPrefixSumAndAverage(X,A,k-1)
5. tot ← tot + X[k]
6. A[k] ← tot / k
7. return tot;

2

v1.2 7

Selection sort

v1.2 8

Insertion sort

v1.2 9

Mystery algorithm

for i := 1 to n - 1 do
max := i ;

for j := i + 1 to n do
if |A[j, i]| > |A[max, i]| then max := j ;

for k := i to n + 1 do
swap A[i, k] with A[max, k];

for j := i + 1 to n do
for k := n + 1 downto i do

A[j, k] := A[j, k] - A[i, k] * A[j, i] / A[i, i] ;

v1.2 10

What is an algorithm?

• Recipe, process, method, technique, procedure,
routine,… with following requirements:

1. Finiteness
b terminates after a finite number of steps

2. Definiteness
b rigorously and unambiguously specified

3. Input
b valid inputs are clearly specified

4. Output
b can be proved to produce the correct output given a valid input

5. Effectiveness
b steps are sufficiently simple and basic

v1.2 11

Pseudocode
• Mixture of English, math

expressions, and computer
code

• Less detailed than a
program

• Preferred notation for
describing algorithms

• Hides program design
issues

• Can write at different levels
of detail.

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
Step through each element in A,
updating currentMax when a
bigger element is found

return currentMax

Very High-level
pseudocode:

v1.2 12

Pseudocode
• Mixture of English, math

expressions, and computer
code

• Less detailed than a
program

• Preferred notation for
describing algorithms

• Hides program design
issues

• Can write at different levels
of detail.

Algorithm arrayMax(A, n)
Input array A of n integers
Output maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Detailed pseudocode

3

v1.2 13

Pseudocode Details
• Control flow

– if … then … [else …]
– while … do …
– repeat … until …
– for … do …
– Indentation replaces braces

• Method declaration
Algorithm method (arg [, arg…])

Input …
Output …

• Method call
var.method (arg [, arg…])

• Return value
return expression

• Expressions
← Assignment

(like = in Java)
= Equality testing

(like == in Java)
n2 Superscripts and other

mathematical formatting
allowed

v1.2 14

Time efficiency is analyzed by determining the
number of repetitions of the basic operation as a
function of input size

• Basic operation: the operation that contributes
most towards the running time of the algorithm

T(n) ˜ copC(n)

Theoretical analysis of time
efficiency

running time execution time
for basic operation

Number of times
basic operation is

executed

input size

v1.2 15

Input size and basic operation
examples

Basic operationInput size measureProblem

Visiting a vertex or
traversing an edge

#vertices and/or edgesGraph problem

Floating point
multiplication

nCompute an

Floating point
multiplication

Dimensions of matrices
Multiply two matrices of
floating point numbers

Key comparison
Number of items in list
n

Search for key in list of
n items

v1.2 16

Best-case, average-case, worst-case
For some algorithms efficiency depends on type of input:

• Worst case: W(n) – maximum over inputs of size n

• Best case: B(n) – minimum over inputs of size n

• Average case: A(n) – “average” over inputs of size n
– Number of times the basic operation will be executed on typical

input
– NOT the average of worst and best case
– Expected number of basic operations repetitions considered as a

random variable under some assumption about the probability
distribution of all possible inputs of size n

v1.2 17

Worst-case count, all
operations

• Worst-case operations count, as a function of
the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 2

v1.2 18

Best-case Count of All
Operations

• Best-case operations count, as a function of the
input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2
for i ← 1 to n − 1 do 1 + n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 0

{ increment counter i } 2(n − 1)
return currentMax 1

Total 5n

4

v1.2 19

Count of Basic Operations

• Let basic operation = key comparison
• Then best-case and worst-case same for this method

Algorithm arrayMax(A, n) # operations
currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i]

{ increment counter i }
return currentMax

Total 2n − 2

v1.2 20

Defining Worst [W(n)], Best
[B(N)], and Average [A(n)]

• Let In = set of all inputs of size n.
• Let t(i) = # of ops by alg on input i.
• W(n) = maximum t(i) taken over all i in In
• B(n) = minimum t(i) taken over all i in I n

• A(n) = , p(i) = prob. of i occurring.

• We focus on the worst case
– Easier to analyze
– Usually want to know how bad can algorithm be
– average-case requires knowing probability; often

difficult to determine

∑
∈ nIi

itip)()(

v1.2 21

Prefix Averages (Quadratic)
• The following algorithm computes prefix averages in

quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

1. A ← new array of n integers
2. for i ← 1 to n do
3. s ← X[1]
4. for j ← 2 to i do
5. s ← s + X[j]
6. A[i] ← s / i
7. return A

v1.2 22

Analysis of prefixAverages1
• Let Basic Operation = key

additions (additions between
array elements)

• The running time of
prefixAverages1 is
1 + 2 + …+ n -1

• The sum of the first n -1
integers is n(n - 1) / 2
– There is a simple visual

proof of this fact
• Thus, algorithm

prefixAverages1 runs in O(n2)
time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

v1.2 23

Analysis of
recPrefixSumAndAverage

• Let ’s count all operations, worst-case. Use recurrence
equation.

Algorithm recPrefixSumAndAverage(X, A, n) T(n) operations
Input array X of n ≥ 1 integer.

Empty array A; A is same size as X.
Output array A[0]…A[n-1] changed to hold prefix averages of X.

returns sum of X[0], X[1],…,X[n-1] #operations
if n=1 1

A[0] ← X[0] 3
return A[0] 2

tot ← recPrefixSumAndAverage(X,A,n-1) 3+T(n-1)
tot ← tot + X[n-1] 4
A[n-1] ← tot / n 4
return tot; 1

v1.2 24

Prefix Averages, Linear

• Recurrence equation
– T(1) = 6
– T(n) = 13 + T(n-1) for n>1.

• Solution of recurrence is
– T(n) = 13(n-1) + 6

• T(n) is O(n).

5

v1.2 25

Empirical analysis of time
efficiency

• Select a specific (typical) sample of inputs
• Use physical unit of time (e.g., milliseconds)

OR
• Count actual number of basic operations

• Analyze the empirical data

v1.2 26

Types of formulas for basic
operation count

• Exact formula
e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with
specific multiplicative constant

e.g., C(n) ˜ 0.5 n2

• Formula indicating order of growth with
unknown multiplicative constant

e.g., C(n) ˜ cn2

v1.2 27

Time efficiency of nonrecursive
algorithms

Steps in mathematical analysis of nonrecursive
algorithms:

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation
• Determine worst, average, and best case for input of

size n
• Set up summation for C(n) reflecting algorithm’s loop

structure
• Simplify summation using standard formulas (see

Appendix A)

v1.2 28

Example: Sequential search

• Problem: Given a list of n elements and a search key
K, find an element equal to K, if any.

• Algorithm: Scan the list and compare its successive
elements with K until either a matching element is
found (successful search) of the list is exhausted
(unsuccessful search)

• Worst case

• Best case

• Average case

v1.2 29

Time efficiency of recursive algorithms
Steps in mathematical analysis of recursive algorithms:

• Decide on parameter n indicating input size
• Identify algorithm’s basic operation

• Determine worst, average, and best case for input of size
n

• Set up a recurrence relation and initial condition(s) for
C(n)-the number of times the basic operation will be
executed for an input of size n (alternatively count
recursive calls).

• Solve the recurrence to obtain a closed form or estimate
the order of magnitude of the solution (see Appendix B)

