TCSS 343

Bounds on balanced binary trees.

The cost of searching for an item in a binary search tree is proportional to the height of the binary tree; in terms of exact number comparisons needed, a binary tree of height k will require k+1 comparisons in the worst-case.

How can we compute the worst-case cost of lookup in balanced binary trees such as AVL trees and red-black trees? We have to compute the formula for the maximum height k of the balanced binary tree in terms of the number of nodes of the tree. This is the same as finding out for a given height k, how many nodes must a balanced binary tree of height k have?

Let’s look at AVL trees first:

AVL tree definition: For every internal node, the height of the two subtrees rooted at its children differ in height by at most 1.

How can we construct maximally unbalanced AVL trees? We can start with small examples, and build upward. Let M(k) denote the minimum number of nodes in AVL tree of height k. There is a nice recursive way to compute M(k). Here are the base cases:

M(0) = 1 O

M(1) = 2 O

 /

 O
M(2) = 4 O

 / \

 O O

 /

 O

M(3) = 4 + 2 + 1 = 7 O
 / \

 / \

 O O
 / \ /
 O O O

 /

 O

M(k) = M(k-1) + M(k-2) + 1.

If we solve the above recurrence equation, we get:

M(k) = [image: image1.wmf]æ

è

ç

ç

ö

ø

÷

÷

 +

3

5

10

1

2

æ

è

ç

ç

ö

ø

÷

÷

 +

1

2

5

2

k

æ

è

ç

ç

ö

ø

÷

÷

-

 +

3

5

10

1

2

æ

è

ç

ç

ö

ø

÷

÷

 -

1

2

5

2

k

1

2

5

æ

è

ç

ç

ö

ø

÷

÷

-

2

 -

1

5

k

5

(

)

 -

1

5

 +

 -

 -

[image: image2.wmf]2

5

æ

è

ç

ç

ö

ø

÷

÷

-

2

 +

1

5

k

5

(

)

 +

1

5

 +

which is approximately

 M(k) (1.8944 (1.618)k + .10557 (-0.618)k
This means that for an AVL tree with n nodes, its height must be at least k, where

 M(k) (n.

Solving the equation 1.8944 (1.618)k = n, we get

 k ((log n – log 1.8944) / log 1.618 (1.44 log2n

Thus, the worst-case lookup cost is about 1.44 log2n.

Now for red-black trees

[image: image3.png]n o,

Here are the requirements for red-black trees:

1. For the purposes of this definition, we consider the leaf nodes as the empty nil nodes at the base of the tree; all nodes containing data are not leaf nodes; these nodes are considered black.

2. All nodes are red or black

3. The root node is black

4. All red nodes have two black children (which are possibly empty nil nodes).

5. All root-to-leaf paths have the same number of black nodes.

What is the worst-case cost for lookup in a red-black tree? Once again, we have to imagine the maximally unbalanced red-black tree possible. In this case, the tree would have one path (like the leftmost path) with an alternating sequence of red and black nodes. Then other black nodes would fill out the rest of the tree, until it satisfied the black-depth property.

Let G(k) = minimum # of non-empty nodes in a Red-Black tree of height k (where we don’t consider the empty nil nodes as part of the height). Then we can draw the small examples as follows (R = red node, B = black node), not drawing empty nil nodes.

G(0) = 1 B

G(1) = 2 B

 /

 R

G(2) = 5 B

 / \

 R B

 / \

 B B

G(3) = Same as height 2 tree, but has additional R node on deepest (leftmost) B node.
 = 5 + 1 = 6.

G(4) = 5 + 2 + 3 + 3 = 13

 B

 / \

 / \

 R complete tree

 / \ of black nodes, height 1

 / \

 / \

 unbalanced complete

 RBTree tree of black

 height 2 nodes, height 1

 R-B

In general, we have

for k odd, G(k) = G(k-1) + 1

For k even, G(k) = G(k-2) + 2 + 2*(2k/2-1) = G(k-2) + 2*(2k/2)

Solving this recursion for even n yields

 G(k) = G(k-2) + 2*2k/2
 = G(k-4) + 2*2(k-2)/2 + 2*2k/2
 = G(k-6) + 2*2(k-4)/2 + 2*2(k-2)/2+2*2k/2
 = G(k-2i) +
[image: image4.wmf]å

-

=

-

1

0

2

/

)

2

(

2

*

2

i

j

j

k

= G(n-2i) +
[image: image5.wmf]å

-

=

-

1

0

2

/

2

*

2

i

j

j

k

=G(0) +
[image: image6.wmf]å

-

=

-

1

2

/

0

2

/

2

*

2

k

j

j

k

=

1 +
[image: image7.wmf]å

=

2

/

1

2

*

2

k

j

j

=1+2*(2k/2+1-2) = 4(2k/2) –3

This means that for an Red-Black tree with n nodes, its height must be at least k, where

 G(k) (n.

Solving the equation 4(2k/2) –3 = n, we get

 k = 2 log2 (n + 3) –4

Thus, the worst-case lookup cost is about 2 log2n.

_1238582324.unknown

_1238582348.unknown

_1238582361.unknown

_1238579887.bin

_1238582322.unknown

